Sulforaphane, a naturally occurring compound found in cruciferous vegetables, has been shown to be neuroprotective in several neurological disorders. In this study, we sought to investigate the potential protective effects and associated molecular mechanisms of sulforaphane in an in vivo Parkinson’s disease (PD) model, based on rotenone-mediated neurotoxicity. Our results showed that sulforaphane inhibited rotenone-induced locomotor activity deficiency and dopaminergic neuronal loss. Additionally, sulforaphane treatment inhibited the rotenone-induced reactive oxygen species production, malondialdehyde (MDA) accumulation, and resulted in an increased level of total glutathione and reduced glutathione (GSH): oxidized glutathione (GSSG) in the brain. Western blot analysis illustrated that sulforaphane increased the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase (NQO1), the latter two of which are anti-oxidative enzymes. Moreover, sulforaphane treatment significantly attenuated rotenone-inhibited mTOR-mediated p70S6K and 4E-BP1 signalling pathway, as well as neuronal apoptosis. In addition, sulforaphane rescued rotenone-inhibited autophagy, as detected by LC3-II. Collectively, these findings demonstrated that sulforaphane exert neuroprotective effect involving Nrf2-dependent reductions in oxidative stress, mTOR-dependent inhibition of neuronal apoptosis, and the restoration of normal autophagy. Sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing PD.
BackgroundResponse inhibition, an important domain of executive function (EF), involves the ability to suppress irrelevant or interfering information and impulses. Previous studies have shown impairment of response inhibition in high functioning autism (HFA) and attention deficit hyperactivity disorder (ADHD), but more recent findings have been inconsistent. To date, almost no studies have been conducted using functional imaging techniques to directly compare inhibitory control between children with HFA and those with ADHD.MethodNineteen children with HFA, 16 age- and intelligence quotient (IQ)-matched children with ADHD, and 16 typically developing (TD) children were imaged using functional near-infrared spectroscopy (NIRS) while performing Go/No-go and Stroop tasks.ResultsCompared with the TD group, children in both the HFA and ADHD groups took more time to respond during the No-go blocks, with reaction time longest for HFA and shortest for TD. Children in the HFA and ADHD groups also made a greater number of reaction errors in the No-go blocks than those in the TD group. During the Stroop task, there were no significant differences between these three groups in reaction time and omission errors. Both the HFA and ADHD groups showed a higher level of inactivation in the right prefrontal cortex (PFC) during the No-go blocks, relative to the TD group. However, no significant differences were found between groups in the levels of oxyhemoglobin concentration in the PFC during the Stroop task.ConclusionFunctional brain imaging using NIRS showed reduced activation in the right PFC in children with HFA or ADHD during an inhibition task, indicating that inhibitory dysfunction is a shared feature of both HFA and ADHD.
Astragaloside IV (AGS-IV), a new glycoside of cycloartane-type triterpene isolated from the root of Astragalus membranaceus (Fisch.) Bunge, has been used experimentally for its potent immune-stimulating, anti-inflammatory, and antioxidative actions. A recent study has shown AGS-IV to be an aldose-reductase inhibitor and a free-radical scavenger. This study examined the effects of AGS-IV on motor nerve conduction velocity (MNCV), tailflick threshold temperature, biochemical indexes, and the histology of the sural nerve after diabetes was induced in rats with 75 mg/kg streptozotocin (STZ). AGS-IV (3, 6, 12 mg/kg, twice a day) was administered by oral gavage for 12 weeks after diabetes was induced. Compared with control (nondiabetic) rats, obvious changes in physiological behaviors and a significant reduction in sciatic MNCV in diabetic rats were observed after 12 weeks of STZ administration. Morphological analysis showed that AGS-IV suppressed a decrease in myelinated fiber area, an increase in myelinated fiber density, and an increase in segmental demyelination in diabetic rats. The protective mechanism of AGS-IV involved a decrease in declining blood glucose concentration and HbA1C levels, and an increase in plasma insulin levels. AGS-IV increased the activity of glutathione peroxidase in nerves, depressed the activation of aldose reductase in erythrocytes, and decreased the accumulation of advanced glycation end products in both nerves and erythrocytes. Moreover, AGS-IV elevated Na+,K+-ATPase activity in both the nerves and erythrocytes of diabetic rats. These results indicate that AGS-IV exerts protective effects against the progression of peripheral neuropathy in STZ-induced diabetes in rats through several interrelated mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.