Twin field quantum key distribution promises high key rates at long distance to beat the rate distance limit. Here, applying the sending or not sending TF QKD protocol, we experimentally demonstrate a secure key distribution breaking the absolute key rate limit of repeaterless QKD over 509 km, 408 km ultra-low loss optical fibre and 350 km standard optical fibre. Two independent lasers are used as the source with remote frequency locking technique over 500 km fiber distance; Practical optical fibers are used as the optical path with appropriate noise filtering; And finite key effects are considered in the key rate analysis. The secure key rates obtained at different distances are more than 5 times higher than the conditional limit of repeaterless QKD, a bound value assuming the same detection loss in the comparison. The achieved secure key rate is also higher than that a traditional QKD protocol running with a perfect repeaterless QKD device and even if an infinite number of sent pulses. Our result shows that the protocol and technologies applied in this experiment enable TF QKD to achieve high secure key rate at long distribution distance, and hence practically useful for field implementation of intercity QKD.Introduction.-Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution (QKD) [1-3], given that quantum signals cannot be amplified. Much efforts have been made towards the goal of a longerdistance for QKD [4][5][6]. Theoretically, the decoy-state method [7][8][9] can improve the key rate of coherent-state based QKD from scaling quadratically to a linear with the channel transmittance, as what behaves of a perfect single-photon source. This method can beat the photonnumber-splitting attack to the imperfect single-photon source and the coherent state is used as if only those single-photon pulses were used for key distillation, and hence it can reach the key rate to a level comparable with that of a perfect single-photon source.
Randomness is critical for many information processing applications, including numerical modeling and cryptography [1,2]. Device-independent quantum random number generation [3] (DIQRNG) based on the loophole free violation of Bell inequality [4][5][6][7] produces unpredictable genuine randomness without any device assumption and is therefore an ultimate goal in the field of quantum information science [8][9][10]. However, due to formidable technical challenges, there were very few reported experimental studies of DIQRNG [11][12][13][14], which were vulnerable to the adversaries. Here we present a fully functional DIQRNG against the most general quantum adversaries [15][16][17]. We construct a robust experimental platform that realizes Bell inequality violation with entangled photons with detection and locality loopholes closed simultaneously. This platform enables a continuous recording of a large volume of data sufficient for security analysis against the general quantum side information and without assuming independent and identical distribution.Lastly, by developing a large Toeplitz matrix (137.90 Gb × 62.469 Mb) hashing technique, we demonstrate that this DIQRNG generates 6.2469 × 10 7 quantum-certified random bits in 96 hours (or 181 bits/s) with uniformity within 10 −5 . We anticipate this DIQRNG may have profound impact on the research of quantum randomness and information-secured applications.
Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit/s. Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.