Relapse to anti-HER2 monoclonal antibody (mAb) therapies, such as trastuzumab in HER2 + breast cancer (BC), is associated with residual disease progression due to resistance to therapy. Here, we identify interferon-γ inducible protein 16 (IFI16)-dependent STING signaling as a significant determinant of trastuzumab responses in HER2 + BC. We show that down-regulation of immune-regulated genes (IRG) is specifically associated with poor survival of HER2 + , but not other BC subtypes. Among IRG, IFI16 is identified as a direct target of EZH2, the underexpression of which leads to deficient STING activation and downstream CXCL10/11 expression in response to trastuzumab treatment. Dual inhibition of EZH2 and histone deacetylase (HDAC) significantly activates IFI16-dependent immune responses to trastuzumab. Notably, a combination of a novel histone methylation inhibitor with an HDAC inhibitor induces complete tumor eradication and long-term T cell memory in a HER2 + BC mouse model. Our findings demonstrate an epigenetic regulatory mechanism suppressing the expression of the IFI16-CXCL10/11 signaling pathway that provides a survival advantage to HER2 + BC to confer resistance to trastuzumab treatment.
Metastatic tumour recurrence due to failed treatments remains a major challenge of breast cancer clinical management. Here we report that interleukin-1 receptor-associated kinase 1 (IRAK1) is overexpressed in a subset of breast cancers, in particular triple-negative breast cancer (TNBC), where it acts to drive aggressive growth, metastasis and acquired resistance to paclitaxel treatment. We show that IRAK1 overexpression confers TNBC growth advantage through NF-κB-related cytokine secretion and metastatic TNBC cells exhibit gain of IRAK1 dependency, resulting in high susceptibility to genetic and pharmacologic inhibition of IRAK1. Importantly, paclitaxel treatment induces strong IRAK1 phosphorylation, an increase in inflammatory cytokine expression, enrichment of cancer stem cells and acquired resistance to paclitaxel treatment. Pharmacologic inhibition of IRAK1 is able to reverse paclitaxel resistance by triggering massive apoptosis at least in part through inhibiting p38-MCL1 pro-survival pathway. Our study thus demonstrates IRAK1 as a promising therapeutic target for TNBC metastasis and paclitaxel resistance.
Protein-coding mutations in clear cell renal cell carcinoma (ccRCC) have been extensively characterized, frequently involving inactivation of the von Hippel-Lindau ( VHL ) tumor suppressor. Roles for noncoding cis -regulatory aberrations in ccRCC tumorigenesis, however, remain unclear. Analyzing 10 primary tumor/normal pairs and 9 cell lines across 79 chromatin profi les, we observed pervasive enhancer malfunction in ccRCC, with cognate enhancer-target genes associated with tissue-specifi c aspects of malignancy. Superenhancer profi ling identifi ed ZNF395 as a ccRCCspecifi c and VHL-regulated master regulator whose depletion causes near-complete tumor elimination in vitro and in vivo . VHL loss predominantly drives enhancer/superenhancer deregulation more so than promoters, with acquisition of active enhancer marks (H3K27ac, H3K4me1) near ccRCC hallmark genes. Mechanistically, VHL loss stabilizes HIF2α-HIF1β heterodimer binding at enhancers, subsequently recruiting histone acetyltransferase p300 without overtly affecting preexisting promoter-enhancer interactions. Subtype-specifi c driver mutations such as VHL may thus propagate unique pathogenic dependencies in ccRCC by modulating epigenomic landscapes and cancer gene expression. SIGnIFICAnCE:Comprehensive epigenomic profi ling of ccRCC establishes a compendium of somatically altered cis -regulatory elements, uncovering new potential targets including ZNF395, a ccRCC master regulator. Loss of VHL , a ccRCC signature event, causes pervasive enhancer malfunction, with binding of enhancer-centric HIF2α and recruitment of histone acetyltransferase p300 at preexisting lineage-specifi c promoter-enhancer complexes. Cancer Discov; 7(11); 1284-305.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.