Highlights d Integrated proteogenomic characterization in 103 ccRCC cases d Delineation of chromosomal translocation events leading to chromosome 3p loss d Tumor-specific proteomic/phosphoproteomic alterations unrevealed by mRNA analysis d Immune-based subtypes of ccRCC defined by mRNA, proteome, and phosphoproteome
Highlights d Proteogenomic characterization reveals the functional impact of genomic alterations d Phosphoproteomics uncovers putative therapeutic targets downstream of KRAS d Multiomics links endothelial cell remodeling and glycolysis to immune exclusion d Proteomics and glycoproteomics reveal candidates for early detection or intervention
In the originally published version of this article, Daniel Geiszler's last name was misspelled. This error has now been corrected in the article online.
Highlights d A systematic inventory of HNSCC-associated proteins, phosphosites, and pathways d Three multi-omic subtypes linked to targeted treatment approaches and immunotherapy d Widespread deletion of immune modulatory genes accounts for loss of immunogenicity d Two modes of EGFR activation inform response to anti-EGFR monoclonal antibodies
SUMMARY
Zika virus (ZIKV) directly infects neural progenitors and impairs their proliferation. How ZIKV interacts with the host molecular machinery to impact neurogenesis in vivo is not well understood. Here, by systematically introducing individual proteins encoded by ZIKV into the embryonic mouse cortex, we show that expression of ZIKV-NS2A, but not Dengue virus (DENV)-NS2A, leads to reduced proliferation and premature differentiation of radial glial cells, and aberrant positioning of newborn neurons. Mechanistically, in vitro mapping of protein-interactomes and biochemical analysis suggest interactions between ZIKA-NS2A and multiple adherens junction complex (AJ) components. Functionally, ZIKV-NS2A, but not DENV-NS2A, destabilizes the AJ complex, resulting in impaired AJ formation and aberrant radial glial fiber scaffolding in the embryonic mouse cortex. Similarly, ZIKA-NS2A, but not DENV-NS2A, reduces radial glial cell proliferation and causes AJ deficits in human forebrain organoids. Together, our results reveal pathogenic mechanisms underlying ZIKV infection in the developing mammalian brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.