Broadband emission is attributed to the formation of self-trapped excitons (STEs) due to the strong electron−phonon coupling. Interestingly, it has been observed in only certain three-dimensional and low-dimensional metal halide perovskites. Here, we show by density functional theory calculation that a low electronic dimensionality is a prerequisite for the formation of STE and, therefore, broadband emission. We further show that multiple STE structures exist in each perovskite exhibiting broadband emission. However, only the STE with Jahn−Teller-like octahedral distortion is mainly responsible for the observed broadband emission, though it may not be the lowest-energy structure. Our results provide important insights for designing perovskite materials for broadband emissions with preferred chromaticity coordinator or color temperature.
he directed evolution of enzymes promises to eliminate the long-standing limitations of biocatalysis in organic chemistry and biotechnology-the often-observed limited substrate scope, insufficient activity, and poor regioselectivity or stereoselectivity. Saturation mutagenesis at sites lining the binding pocket with formation of focused libraries has emerged as the technique of choice, but choosing the optimal size of the randomization site and reduced amino acid alphabet for minimizing the labor-determining screening effort remains a challenge. Here, we introduce structure-guided triple-code saturation mutagenesis (TCSM) by encoding three rationally chosen amino acids as building blocks in the randomization of large multiresidue sites. In contrast to conventional NNK codon degeneracy encoding all 20 canonical amino acids and requiring the screening of more than 10(15) transformants for 95% library coverage, TCSM requires only small libraries not exceeding 200800 transformants in one library. The triple code utilizes structural (X-ray) and consensus-derived sequence data, and is therefore designed to match the steric and electrostatic characteristics of the particular enzyme. Using this approach, limonene epoxide hydrolase has been successfully engineered as stereoselective catalysts in the hydrolytic desymmetrization of meso-type epoxides with formation of either (R,R)- or (S,S)-configurated diols on an optional basis and kinetic resolution of chiral substrates. Crystal structures and docking computations support the source of notably enhanced and inverted enantioselectivity
Allopolyploidy is an important speciation mechanism and is ubiquitous among plants. Brassica napus is a model system for studying the consequences of hybridization and polyploidization on allopolyploid genome. In this research, two sets of plant materials were used to investigate the transcriptomic and epigenetic changes in the early stages of allopolyploid formation. The first comparison was between a synthetic B. napus allotetraploid and its diploid progenitors, B. rapa (AA genome) and B. oleracea (CC genome). Using cDNA-amplified fragment length polymorphism (cDNA-AFLP) and methylation-sensitive amplification polymorphism (MSAP) approaches, ~4.09 and 6.84% of the sequences showed changes in gene expression and DNA methylation in synthesized B. napus compared to its diploid progenitors. The proportions of C-genome-specific gene silencing and DNA methylation alterations were significantly greater than those of A-genome-specific alterations. The second comparison was between amphihaploid and amphidiploid B. napus organs grown on synthesized dimorphic plants. About 0.73% of the cDNA-AFLP fragments and 1.94% of the MSAP fragments showed changes in gene expression and DNA methylation. We sequenced 103 fragments that differed in the synthetic/parental or the amphihaploid/amphidiploid cDNA-AFLP and MSAP comparisons. Sequence analysis revealed these fragments were involved in various biological pathways. Our results provided evidence for genome-wide changes in gene expression and DNA methylation occurring immediately after hybridization and polyploidization in synthetic B. napus. Moreover, this study contributed to the elucidation of genome doubling effects on responses of transcriptome and epigenetics in B. napus.
This paper describes a facile method for synthesis of Au-AgCdSe hybrid nanorods with controlled morphologies and spatial distributions. The synthesis involved deposition of Ag tips at the ends of Au nanorod seeds, followed by selenization of the Ag tips and overgrowth of CdSe on these sites. By simply manipulating the pH value of the system, the AgCdSe could selectively grow at one end, at both the ends or on the side surface of a Au nanorod, generating a mike-like, dumbbell-like, or toothbrush-like hybrid nanorod, respectively. These three types of Au-AgCdSe hybrid nanorods displayed distinct localized surface plasmon resonance and photoluminescence properties, demonstrating an effective pathway for maneuvering the optical properties of nanocrystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.