Background
Acquired resistance remains a limitation of the clinical use of 5-fluorouracil (5-FU). Because exosomes, are important vesicles participating in intercellular communication, their contribution to the development of acquired 5-FU resistance needs to be elucidated. In this study, we aimed to examine the underlying mechanisms of exosomes from 5-FU resistant cells (RKO/R) in sustaining acquired 5-FU resistance in sensitive cells (RKO/P).
Methods
Exosomes from a 5-FU-resistant cell line (RKO/R) and its parental cell line RKO/P were isolated and co-cultured with 5-FU-sensitive cells. Real-time cellular analysis (RTCA) and FACS analysis were used to examine cell viability and apoptosis. Exosomal protein profiling was performed using shotgun proteomics. Inhibitors and siRNAs were applied to study the involvement of selected proteins in 5-FU resistance. The effect of exosomal p-STAT3 (Tyr705) on the caspase cascade was examined by western blotting (WB) and high content analysis. Xenograft models were established to determine whether exosomal p-STAT3 can induce 5-FU resistance in vivo.
Results
Our results indicated that exosomes from RKO/R cells significantly promoted cell survival during 5-FU treatment. Proteomics and WB analysis results indicated that GSTP1 and p-STAT3 (Tyr705) were enriched in exosomes from RKO/R cells. Inhibition of p-STAT3 re-sensitized RKO/P cells to 5-FU via caspase cascade. Furthermore, p-STAT3 packaged by exosomes from RKO/R cells increased resistance of tumor cells to 5-FU in vivo.
Conclusions
Our results reveal a novel mechanism by which p-STAT3-containing exosomes contribute to acquired 5-FU resistance in CRC. This study suggests a new option for potentiating the 5-FU response and finding biomarkers for chemotherapy resistance.
Electronic supplementary material
The online version of this article (10.1186/s13046-019-1314-9) contains supplementary material, which is available to authorized users.
Gut microbiota and short‐chain fatty acids (SCFAs) are associated with the development of various human diseases. In this study, we examined the role of astragaloside IV in modulating mouse gut microbiota structure and the generation of SCFAs, as well as in slow transit constipation (STC). An STC model was established by treating mice with loperamide, in which the therapeutic effects of astragaloside IV were evaluated. The microbiota community structure and SCFA content were analysed by 16S rRNA gene sequencing and gas chromatography‐mass spectrometry, respectively. The influence of butyrate on STC was assessed using a mouse model and Cajal cells (ICC). Astragaloside IV promoted defecation, improved intestinal mobility, suppressed ICC loss and alleviated colonic lesions in STC mice. Alterations in gut microbiota community structure in STC mice, such as decreased
Lactobacillus reuteri
diversity, were improved following astragaloside IV treatment. Moreover, astragaloside IV up‐regulated butyric acid and valeric acid, but decreased isovaleric acid, in STC mouse stools. Butyrate promoted defecation, improved intestinal mobility, and enhanced ICC proliferation by regulating the AKT–NF‐κB signalling pathway. Astragaloside IV promoted intestinal transit in STC mice and inhibited ICC loss by regulating the gut microbiota community structure and generating butyric acid.
miR-143 may induce bowel inflammation by regulating ATG2B and autophagy, suggesting that miR-143 might play a critical role in the development of CD. Therefore, miR-143 could be a promising novel target for gene therapy in CD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.