Metabolic reprogramming is fundamental to biological homeostasis, enabling cells to adjust metabolic routes after sensing altered availability of fuels and growth factors. ULK1 and ULK2 represent key integrators that relay metabolic stress signals to the autophagy machinery. Here, we demonstrate that, during deprivation of amino acid and growth factors, ULK1/2 directly phosphorylate key glycolytic enzymes including hexokinase (HK), phosphofructokinase 1 (PFK1), enolase 1 (ENO1), and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP1). Phosphorylation of these enzymes leads to enhanced HK activity to sustain glucose uptake but reduced activity of FBP1 to block the gluconeogenic route and reduced activity of PFK1 and ENO1 to moderate drop of glucose-6-phosphate and to repartition more carbon flux to pentose phosphate pathway (PPP), maintaining cellular energy and redox homeostasis at cellular and organismal levels. These results identify ULK1/2 as a bifurcate-signaling node that sustains glucose metabolic fluxes besides initiation of autophagy in response to nutritional deprivation.
Catalytic hydrogenation of nitroaromatics is an environment‐benign strategy to produce industrially important aniline intermediates. Herein, we report that Fe(OH)x deposition on Pt nanocrystals to give Fe(OH)x/Pt, enables the selective hydrogenation of nitro groups into amino groups without hydrogenating other functional groups on the aromatic ring. The unique catalytic behavior is identified to be associated with the FeIII‐OH‐Pt interfaces. While H2 activation occurs on exposed Pt atoms to ensure the high activity, the high selectivity towards the production of substituted aniline originates from the FeIII‐OH‐Pt interfaces. In situ IR, X‐ray photoelectron spectroscopy (XPS), and isotope effect studies reveal that the Fe3+/Fe2+ redox couple facilitates the hydrodeoxygenation of the ‐NO2 group during hydrogenation catalysis. Benefitting from FeIII‐OH‐Pt interfaces, the Fe(OH)x/Pt catalysts exhibit high catalytic performance towards a broad range of substituted nitroarenes.
Tumor-derived microvesicles are rich in metastasis-related proteases and play a role in the interactions between tumor cells and tumor microenvironment in tumor metastasis. Because shed microvesicles may remain in the extracellular environment around tumor cells, the microvesicle membrane protein may be the potential target for cancer therapy. Here we report that chromosome segregation 1-like (CSE1L) protein is a microvesicle membrane protein and is a potential target for cancer therapy. v-H-Ras expression induced extracellular signal-regulated kinase (ERK)-dependent CSE1L phosphorylation and microvesicle biogenesis in various cancer cells. CSE1L overexpression also triggered microvesicle generation, and CSE1L knockdown diminished v-H-Ras-induced microvesicle generation, matrix metalloproteinase (MMP)-2 and MMP-9 secretion and metastasis of B16F10 melanoma cells. CSE1L was preferentially accumulated in microvesicles and was located in the microvesicle membrane. Furthermore, anti-CSE1L antibody-conjugated quantum dots could target tumors in animal models. Our findings highlight a novel role of Ras-ERK signaling in tumor progression and suggest that CSE1L may be involved in the "early" and "late" metastasis of tumor cells in tumorigenesis. Furthermore, the novel microvesicle membrane protein, CSE1L, may have clinical utility in cancer diagnosis and targeted cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.