Boron and nitrogen codoped hollow graphene microspheres (NBGHSs), synthesized from a simple template sacrificing method, have been employed as an electrocatalyst for the oxygen reduction reaction (ORR). Because of their specific hollow structure that consists of boron and nitrogen codoped graphene, the NBGHSs can exhibit even high electrocatalytic activity toward ORR than the commercial JM Pt/C 40 wt %. This, along with their higher stability, makes the NBGHSs particularly attractive as the electrocatalyst for the ORR with great potential to replace the commonly used noble-metal-based catalysts.
It has been demonstrated for the first time that α-phosphonovinyl tosylates could efficiently couple with a range of arylboronic acids to access α-arylethenylphosphonates. The unprecedented procedure exhibits excellent functional group tolerance, giving the terminal vinylphosphonates in good to excellent isolated yields (60-99%) under mild reaction conditions.
A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N'-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens. The extraction performance of the developed monolithic sorbent was evaluated for benzoic acid, 3-hydroxybenzoic acid, cinnamic acid, 2,4-dichlorophenoxyacetic acid, and 3-(trifluoromethyl)-cinnamic acid. Such a sorbent, bearing hydrophobic and anion-exchange groups, had high extraction efficiency towards the test compounds. The adsorption capacities for the analytes dissolved in water ranged from 0.18 to 1.74 μg cm(-1). Good linear calibration curves (R(2) > 0.99) were obtained, and the limits of detection (S/N = 3) for the analytes were found to be in the range 1.2-13.5 ng mL(-1). The recoveries of five acidic food additives spiked in Coca-Cola beverage samples ranged from 85.4 % to 98.3 %, with RSD less than 6.9 %. The excellent applicability of the ionic liquid (IL)-modified monolithic column was further tested by the determination of benzoic acid content in Sprite samples, further illustrating its good potential for analyzing food additives in complex samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.