Contact engineering is a prerequisite for achieving desirable functionality and performance of semiconductor electronics, which is particularly critical for organic–inorganic hybrid halide perovskites due to their ionic nature and highly reactive interfaces. Although the interfaces between perovskites and charge‐transporting layers have attracted lots of attention due to the photovoltaic and light‐emitting diode applications, achieving reliable perovskite/electrode contacts for electronic devices, such as transistors and memories, remains as a bottleneck. Herein, a critical review on the elusive nature of perovskite/electrode interfaces with a focus on the interfacial electrochemistry effects is presented. The basic guidelines of electrode selection are given for establishing non‐polarized interfaces and optimal energy level alignment for perovskite materials. Furthermore, state‐of‐the‐art strategies on interface‐related electrode engineering are reviewed and discussed, which aim at achieving ohmic transport and eliminating hysteresis in perovskite devices. The role and multiple functionalities of self‐assembled monolayers that offer a unique approach toward improving perovskite/electrode contacts are also discussed. The insights on electrode engineering pave the way to advancing stable and reliable perovskite devices in diverse electronic applications.
The CXC chemokine receptor type 4 (CXCR4) receptor and its ligand, CXCL12, are overexpressed in various cancers and mediate tumor progression and hypoxia-mediated resistance to cancer therapy. While CXCR4 antagonists have potential anticancer effects when combined with conventional anticancer drugs, their poor potency against CXCL12/CXCR4 downstream signaling pathways and systemic toxicity had precluded clinical application. Herein, BPRCX807, known as a safe, selective, and potent CXCR4 antagonist, has been designed and experimentally realized. In in vitro and in vivo hepatocellular carcinoma mouse models it can significantly suppress primary tumor growth, prevent distant metastasis/cell migration, reduce angiogenesis, and normalize the immunosuppressive tumor microenvironment by reducing tumor-associated macrophages (TAMs) infiltration, reprogramming TAMs toward an immunostimulatory phenotype and promoting cytotoxic T cell infiltration into tumor. Although BPRCX807 treatment alone prolongs overall survival as effectively as both marketed sorafenib and anti–PD-1, it could synergize with either of them in combination therapy to further extend life expectancy and suppress distant metastasis more significantly.
A simple and efficient catalyst, benzimidazole (BIMH)-modified copper foil, is developed to enhance the selective conversion of CO2 to C2/C3 products. The overall faradaic efficiency (FE) for CO2 reduction reaches 92.1% and the undesired hydrogen evolution reaction (HER) is lowered to a FE of 7% at -1.07 VRHE.
Defect engineering is a key approach for tailoring the properties of the emerging two-dimensional semiconductors. Here, we report an atomic engineering of the W vacancy in monolayer WSe 2 by single potassium atom decoration. The K decoration alters the energy states and reshapes the wave-function such that previously hidden mid-gap states become visible with well-resolved multiplets in scanning tunneling spectroscopy. Their energy levels are in good agreement with first principle calculations. More interestingly, the calculations show that an unpaired electron donated by the K atom can lead to a local magnetic moment, exhibiting an onoff switching by the odd-even number of electron filling. Experimentally the Fermi level is pinned above all defect states due to the graphite substrate, corresponding to an off state. The close agreement between theory and experiment in the off state, on the other hand, suggest a possibility of gate-programmable magnetic moments at the defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.