Aims/hypothesis Previous evidence linking red meat consumption with diabetes risk mainly came from western countries, with little evidence from China, where patterns of meat consumption are different. Moreover, global evidence remains inconclusive about the associations of poultry and fish consumption with diabetes. Therefore we investigated the associations of red meat, poultry and fish intake with incidence of diabetes in a Chinese population. Methods The prospective China Kadoorie Biobank recruited~512,000 adults (59% women, mean age 51 years) from ten rural and urban areas across China in 2004-2008. At the baseline survey, a validated interviewer-administered laptop-based questionnaire was used to collect information on the consumption frequency of major food groups including red meat, poultry, fish, fresh fruit and several others. During~9 years of follow-up, 14,931 incidences of new-onset diabetes were recorded among 461,036 participants who had no prior diabetes, cardiovascular diseases or cancer at baseline. Cox regression analyses were performed to calculate adjusted HRs for incident diabetes associated with red meat, poultry and fish intake. Results At baseline, 47.0%, 1.3% and 8.9% of participants reported a regular consumption (i.e. ≥4 days/week) of red meat, poultry and fish, respectively. After adjusting for adiposity and other potential confounders, each 50 g/day increase in red meat and fish intake was associated with 11% (HR 1.11 [95% CI 1.04, 1.20]) and 6% (HR 1.06 [95% CI 1.00, 1.13]) higher risk of incident diabetes, respectively. For both, the associations were more pronounced among men and women from urban areas, with For a list of members of the China Kadoorie Biobank Collaborative Group please see the electronic supplementary material (ESM).
In this study, the proteomes of liver tissues are investigated in three periods of the lactation cycle of Holstein cows by using isobaric tag for relative and absolute quantification (iTRAQ) technique to obtain liver proteome and identify functional proteins/genes involved in milk synthesis in dairy cattle. Based on iTRAQ analysis, 3252 proteins are detected in the liver tissues (false discovery rate ࣘ0.01). Thirty-two differently expressed proteins (DEPs) are identified during the three periods by p-value <0.05 and fold change (FC) ࣙ2 or ࣘ0.5, and 183 DEPs based on p-value <0.05 and FC ࣙ1.5 or ࣘ0.67. In addition, 905 DEPs are obtained across the three periods by p-value <0.05 and FC ࣙ1.2, or ࣘ0.83, and the subsequent GO and KEGG pathway functional analysis indicate that 73 DEPs are significantly enriched into the metabolic terms and pathways involved in milk synthesis such as citrate cycle, fatty acid, starch and sucrose metabolism, and mTOR and PPAR signaling pathways. Further, 41 out of 73 DEPs are identified near to both the peak locations of the reported quantitative trait locus and significant single nucleotide polymorphisms that associate with milk yield and composition traits. In addition, the 41 DEPs are analyzed with the previous liver transcriptome data that used the same samples as this study, and considered nine proteins/genes-ALDH18A1, APOA4, CYP7A1, HADHB, PRKACA, IDH2, LDHA, LDHB, and MAT2A-to be the promising candidates for milk fat, protein, and lactose synthesis in dairy cattle. This study provides a new vision for identifying the potential critical genes associated with milk synthesis of dairy cattle.
Previous research regarding Holstein cows has mainly focused on increasing milk yield. However, in order to maximize the economical profits of Holstein cattle farming, it is necessary to fully take advantage of Holstein bulls to produce high-grade beef. The present study aims to investigate different transcriptomic profiling of Holstein bulls and steers, via highthroughput RNA-sequencing (RNA-seq). The growth and beef quality traits of Holstein steers and bulls were characterized via assessment of weight, rib eye area, marbling score, shear force and intramuscular fat percentage of the longissimus lumborum (LL) muscle. The results indicated that castration improved the meat quality, yet reduced the meat yield. Subsequently, RNA-seq of the LL muscle from Holstein steers and bulls revealed a total of 56 differentially expressed genes (DEGs). We performed the functional enrichment analysis in Gene Ontology (GO) annotations of the DEGs using GOseq R package software and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using KOBAS tool. Through the integrated analysis of DEGs with reported QTLs and SNPs, seven promising candidate genes potentially affecting the beef quality of LL muscle following castration were discovered, including muscle structural protein coding genes (MYH1, MYH4, MYH10) and functional protein coding genes (GADL1, CYP2R1, EEPD1, SHISA3). Among them, MYH10, GADL1, CYP2R1, EEPD1 and SHISA3 were novel candidate genes associated with beef quality traits. Notably, EEPD1 was associated with both meat quality and reproduction traits, thus indicating its overlapping role in responding to hormone change, and subsequently inducing beef quality improvement. Our findings provide a complete dataset of gene expression profile of LL in Holstein bulls and steers, and will aid in understanding how castration influence meat yield and quality.
BackgroundIschemia–reperfusion injury has been proven to induce organ dysfunction and death, although the mechanism is not fully understood. Long non-coding RNAs (lncRNAs) have drawn wide attention with their important roles in the gene expression of some biological processes and diseases, including myocardial ischemia–reperfusion (I/R) injury. In this paper, a total of 26 Sprague–Dawley (SD) rats were randomized into two groups: sham and ischemia–reperfusion (I/R) injury. Hemorrhagic shock was induced by removing 45% of the estimated total blood volume followed by reinfusion of shed blood. High-throughput RNA sequencing was used to analyze differentially expressed (DE) lncRNAs and messenger RNAs (mRNAs) in the heart tissue 4 h after reperfusion. Myocardial function was also evaluated.ResultsAfter resuscitation, the decline of myocardial function of shocked animals, expressed by cardiac output, ejection fraction, and myocardial performance index (MPI), was significant (p < 0.05). DE lncRNAs and mRNAs were identified by absolute value of fold change ≥ 2 and the false discovery rate ≤ 0.001. In rats from the I/R injury group, 851 lncRNAs and 1015 mRNAs were significantly up-regulated while 1533 lncRNAs and 1702 m RNAs were significantly down-regulated when compared to the sham group. Among the DE lncRNAs, we found 12 location-associated with some known apoptosis-related protein-coding genes which were up-regulated or down-regulated accordingly, including STAT3 and Il1r1. Real time PCR assays confirmed that the expression levels of five location-associated lncRNAs (NONRATT006032.2, NONRATT006033.2, NONRATT006034.2, NONRATT006035.2 and NONRATT029969.2) and their location-associated mRNAs (STAT3 and Il1r1) in the rats from the I/R injury group were all significantly up-regulated versus the sham group.ConclusionsThe DE lncRNAs (NONRATT006032.2, NONRATT006033.2, NONRATT006034.2 and NONRATT006035.2) could be compatible with their role in myocardial protection by stimulating their co-located gene (STAT3) after hemorrhagic shock and resuscitation. The final prognosis of I/R injury might be regulated by different genes, which is regarded as a complex network.Electronic supplementary materialThe online version of this article (10.1186/s12867-018-0113-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.