Background As a subclass of noncoding RNAs, circular RNAs (circRNAs) have been demonstrated to play a critical role in regulating gene expression in eukaryotes. Recent studies have revealed the pivotal functions of circRNAs in cancer progression. However, little is known about the role of circTADA2A, also named hsa_circ_0043278, in osteosarcoma (OS). Methods CircTADA2A was selected from a previously reported circRNA microarray comparing OS cell lines and normal bone cells. QRT-PCR was used to detect the expression of circTADA2A in OS tissue and cell lines. Luciferase reporter, RNA immunoprecipitation (RIP), RNA pull-down and fluorescence in situ hybridization (FISH) assays were performed to confirm the binding of circTADA2A with miR-203a-3p. OS cells were stably transfected with lentiviruses, and Transwell migration, Matrigel invasion, colony formation, proliferation, apoptosis, Western blotting, and in vivo tumorigenesis and metastasis assays were employed to evaluate the roles of circTADA2A, miR-203a-3p and CREB3. Results Our findings demonstrated that circTADA2A was highly expressed in both OS tissue and cell lines, and circTADA2A inhibition attenuated the migration, invasion and proliferation of OS cells in vitro as well as tumorigenesis and metastasis in vivo. A mechanistic study revealed that circTADA2A could readily sponge miR-203a-3p to upregulate the expression of CREB3, which was identified as a driver gene in OS. Furthermore, miR-203a-3p inhibition or CREB3 overexpression could reverse the circTADA2A silencing-induced impairment of malignant tumor behavior. Conclusions CircTADA2A functions as a tumor promoter in OS to increase malignant tumor behavior through the miR-203a-3p/CREB3 axis, which could be a novel target for OS therapy. Electronic supplementary material The online version of this article (10.1186/s12943-019-1007-1) contains supplementary material, which is available to authorized users.
Background Osteosarcoma (OS) is the most common malignant bone tumor and has a poor prognosis. The potential involvement of circular RNAs (circRNAs) in OS progression remains unexplored. Here, we report that CircECE1, a circular RNA derived from human ECE1, plays a critical role in energy metabolism in OS. Methods The RIP chip sequence assay was performed to confirm CircECE1, through overexpression or knockdown of CircECE1 to verify its function in 143B and U2OS. RNA immunoprecipitation and immunoprecipitation were used to verify CircECE1’s regulation of protein c-Myc and co- immunoprecipitation was used to verified the competitive binding relationship between CircECE1 and SPOP. The influence of CircECE1 on energy metabolism was evaluated by seahorse experiment, western blot, and immunohistochemistry. Results We found that CircECE1 is highly expressed in OS tissues and cells and that CircECE1 knockdown suppresses tumor proliferation and metastasis both in vitro and in vivo. Further, CircECE1 significantly promotes glucose metabolism in OS cells in vitro and in vivo. Mechanistically, CircECE1 interacts with c-Myc to prevent speckle-type POZ-mediated c-Myc ubiquitination and degradation. C-Myc inhibits thioredoxin binding protein (TXNIP) transcription and subsequently activates the Warburg effect. Conclusions CircECE1 regulates the Warburg effect through the c-Myc/TXNIP axis. CircECE1 mediated signal transduction plays a important role in OS process and energy metabolism. These findings may identify novel targets for OS molecular therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.