Effective and accurate assessment of grassland above-ground biomass (AGB) especially via remote sensing (RS), is crucial for forage-livestock balance and ecological environment protection of alpine grasslands. Because of complexity and extensive spatial distribution of natural grassland resources, the RS estimation models based on moderate resolution imaging spectroradiometer (MODIS) data exhibited low accuracy and poor stability. In this study, various methods for estimating the AGB of alpine grassland vegetation using MODIS vegetation indices were evaluated by combining with meteorology, soil, topography geography and in situ measured AGB data (during grassland growing season from 2011 to 2016) in Gannan region. Results show that (1) five out of ten factors (elevation, slope, aspect, topographic position, temperature, precipitation and the concentration of clay and sand in the soil) exert significant effects on grassland AGB, with R 2 0.04~0.39, and RMSE 859.68 kg/ha ~ 1075.09 kg/ha, respectively; (2) the accuracy and stability of AGB estimation model can be improved by constructing multivariate models, especially using multivariate non-parameter models; (3) the optimum estimation model is constructed on the basis of random forest algorithm (RF). Compared with univariate/multivariate parameter models, RMSE of RF model decreased 26.45 %-44.27 %. Meanwhile, RF models can explain 89.41 % variation in AGB during grass growing season. This study presented a more suitable RS inversion model integrated MODIS vegetation indices and other effect factors. Besides, the accuracy based on MODIS data were greatly improved. Thus, our study provides a scientific basis for effective and accurate estimating alpine grassland AGB.
The Zoige Plateau is typical of alpine wetland ecosystems worldwide, which play a key role in regulating global climate and ecological balance. Due to the influence of global climate change and intense human activities, the stability and sustainability of the ecosystems associated with the alpine marsh wetlands are facing enormous threats. It is important to establish a precise risk assessment method to evaluate the risks to alpine wetlands ecosystems, and then to understand the influencing factors of ecological risk. However, the multi-index evaluation method of ecological risk in the Zoige region is overly focused on marsh wetlands, and the smallest units of assessment are relatively large. Although recently developed landscape ecological risk assessment (ERA) methods can address the above limitations, the final directionality of the evaluation results is not clear. In this work, we used the landscape ERA method based on land use and land cover changes (LUCC) to evaluate the ecological risks to an alpine wetland ecosystem from a spatial pixel scale (5 km × 5 km). Furthermore, the boosted regression tree (BRT) model was adopted to quantitatively analyze the impact factors of ecological risk. The results show the following: (1) From 1990 to 2016, the land use and land cover (LULC) types in the study area changed markedly. In particular, the deep marshes and aeolian sediments, and whereas construction land areas changed dramatically, the alpine grassland changed relatively slowly. (2) The ecological risk in the study area increased and was dominated by regions with higher and moderate risk levels. Meanwhile, these areas showed notable spatio-temporal changes, significant spatial correlation, and a high degree of spatial aggregation. (3) The topographic distribution, climate changes and human activities influenced the stability of the study area. Elevation (23.4%) was the most important factor for ecological risk, followed by temperature (16.2%). Precipitation and GDP were also seen to be adverse factors affecting ecological risk, at levels of 13.0% and 12.1%, respectively. The aim of this study was to provide more precise and specific support for defining conservation objectives, and ecological management in alpine wetland ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.