Lignins isolated from representative hardwood, softwood, and grass materials were effectively hydrocracked to aromatics catalyzed by tungsten carbide over activated carbon (W C/AC). The effects of botanical species and fractionation methods on lignin structure and the activity of W C/AC were studied in detail. Gas permeation chromatography (GPC), FTIR, elemental analysis, and 2 D HSQC NMR showed that all the extracted samples shared the basic skeleton of lignin, whereas the fractionation method significantly affected the structure. The organosolv process provided lignin with a structure more similar to the native lignin, which was labile to be depolymerized by W C/AC. Softwood lignins (i.e., spruce and pine) possessed higher molecular weights than hardwood lignins (i.e., poplar and basswood); whereas corn stalk lignin that has noncanonical subunits and exhibited the lowest molecular weight owing to its shorter growth period. β-O-4 bonds were the major linkages in all lignin samples, whereas softwood lignins contained more resistant linkages of β-5 and less β-β than corn stalk and hardwood lignins; as a result, lowest hydrocracking efficiency was obtained in softwood lignins, followed by corn stalk and hardwood lignins. 2 D HSQC NMR spectra of lignin and the liquid oil as well as the solid residue showed that W C/AC exhibited high activity not only in β-O-4 cleavage, but also in deconstruction of other ether linkages between aromatic units, so that high yield of liquid oil was obtained from lignin.
ReOx/AC exhibits high catalytic activity and selectivity for the C–O bond cleavage of lignin via hydrogen transfer reactions in isopropanol.
The main purpose of this research is to provide a theoretical foundation for the screening of drought-resistant soybean varieties and to establish an efficient method to detect the PSII actual photochemical quantum yields efficiently. Three soybean varieties were compared in this experiment after 15 d when they were planted in a greenhouse. These varieties were then exposed to light drought stress (LD) and serious drought stress (SD) conditions. With five times' measurement, chlorophyll fluorescence and soil-plant analysis development considered as the main basis for this study. Several parameters in SD conditions significantly reduced, such as net photosynthetic rates (Pn), stomatal conductance (Gs), PSII primary light energy conversion efficiency (Fv/FM), PSII actual photochemical quantum yields [Y(II)], photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (qN). The soybeans in the seedling stage adapted to the inhibitory effect of drought stress on photosynthesis through stomatal limitation. Under serious drought stress, non-stomatal limitation damaged the plant photosynthetic system. The amplitudes of Pn and Y(II) of drought-resistant Qihuang 35 were lower than those of the two other varieties. Based on the data of this study, a new method had been developed to detect Y (II) which reflected the photosynthetic capacity of plant, R=0.85989, u=0.048803 when using multiple linear regression, and R=0.84285, u=0.054739 when using partial least square regression. of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings. Int J Agric & Biol Eng, 2018; 11(2): 196-201.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.