In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Reversibly switchable fluorescent proteins (RSFPs) can be effectively used for super-resolution optical fluctuation imaging (SOFI) based on the switching and fluctuation of single molecules. Several properties of RSFPs strongly influence the quality of SOFI images. These properties include (i) the averaged fluorescence intensity in the fluctuation state, (ii) the on/off contrast ratio, (iii) the photostability, and (iv) the oligomerization tendency. The first three properties determine the fluctuation range of the imaged pixels and the SOFI signal, which are of essential importance to the spatial resolution, and the last may lead to artificial aggregation of target proteins. The RSFPs that are currently used for SOFI are low in averaged fluorescence intensity in the fluctuation state, photostability, and on/off contrast ratio, thereby limiting the range of application of SOFI in biological super-resolution imaging. In this study, we developed a novel monomeric green RSFP termed Skylan-S, which features very high photostability, contrast ratio, and averaged fluorescence intensity in the fluctuation state. Taking advantage of the excellent optical properties of Skylan-S, a 4-fold improvement in the fluctuation range of the imaged pixels and higher SOFI resolution can be obtained compared with Dronpa. Furthermore, super-resolution imaging of the actin or tubulin structures and clathrin-coated pits (CCPs) in living U2OS cells labeled with Skylan-S was demonstrated using the SOFI technique. Overall, Skylan-S developed with outstanding photochemical properties is promising for long-time SOFI imaging with high spatial-temporal resolution.
Two long-standing problems for superresolution (SR) fluorescence microscopy are high illumination intensity and long acquisition time, which significantly hamper its application for live-cell imaging. Reversibly photoswitchable fluorescent proteins (RSFPs) have made it possible to dramatically lower the illumination intensities in saturated depletion-based SR techniques, such as saturated depletion nonlinear structured illumination microscopy (NL-SIM) and reversible saturable optical fluorescence transition microscopy. The characteristics of RSFPs most critical for SR live-cell imaging include, first, the integrated fluorescence signal across each switching cycle, which depends upon the absorption cross-section, effective quantum yield, and characteristic switching time from the fluorescent "on" to "off" state; second, the fluorescence contrast ratio of on/off states; and third, the photostability under excitation and depletion. Up to now, the RSFPs of the Dronpa and rsEGFP (reversibly switchable EGFP) families have been exploited for SR imaging. However, their limited number of switching cycles, relatively low fluorescence signal, and poor contrast ratio under physiological conditions ultimately restrict their utility in time-lapse live-cell imaging and their ability to reach the desired resolution at a reasonable signal-to-noise ratio. Here, we present a truly monomeric RSFP, Skylan-NS, whose properties are optimized for the recently developed patterned activation NL-SIM, which enables low-intensity (∼100 W/cm 2 ) live-cell SR imaging at ∼60-nm resolution at subsecond acquisition times for tens of time points over broad field of view. Skylan-NSI n the last two decades, the power of fluorescence microscopy has been enhanced by the addition of superresolution (SR) imaging techniques (1-7). Although every SR technique has been successfully demonstrated to resolve ultrastructures beyond the diffraction limit, many of them encounter practical limitations when imaging nano-scale dynamics in living biological samples, especially over long times and large fields of view. For example, the thousands of raw frames typically acquired for a single-molecule localizationbased SR image greatly restrict the temporal resolution of the technique (1, 2, 8) and make it susceptible to blurring induced by cellular motion. On the other hand, structured illumination microscopy (SIM) is capable of live-cell time-lapse imaging for tens to hundreds of time points, at speeds as fast as 11 frames per second (9) and illumination intensities of only 1-100 W/cm 2 . However, its major shortcoming is that it improves resolution only twofold, to ∼100 nm. Stimulated emission depletion (STED) microscopy (4) and saturated SIM (SSIM) (7, 10, 11) are not subject to this constraint but rather provide diffraction unlimited resolution by exploiting a nonlinear dependence of the fluorescence emission rate upon an illumination intensity. Saturation of the excited electronic state S 1 to ground state S 0 (S 1 →S 0 ) via stimulated emission is used in STED,...
Human parvovirus B19 (B19V) infection of primary human erythroid progenitor cells (EPCs) arrests infected cells at both late S-phase and G2-phase, which contain 4N DNA. B19V infection induces a DNA damage response (DDR) that facilitates viral DNA replication but is dispensable for cell cycle arrest at G2-phase; however, a putative C-terminal transactivation domain (TAD2) within NS1 is responsible for G2-phase arrest. To fully understand the mechanism underlying B19V NS1-induced G2-phase arrest, we established two doxycycline-inducible B19V-permissive UT7/Epo-S1 cell lines that express NS1 or NS1mTAD2, and examined the function of the TAD2 domain during G2-phase arrest. The results confirm that the NS1 TAD2 domain plays a pivotal role in NS1-induced G2-phase arrest. Mechanistically, NS1 transactivated cellular gene expression through the TAD2 domain, which was itself responsible for ATR (ataxia-telangiectasia mutated and Rad3-related) activation. Activated ATR phosphorylated CDC25C at serine 216, which in turn inactivated the cyclin B/CDK1 complex without affecting nuclear import of the complex. Importantly, we found that the ATR-CHK1-CDC25C-CDK1 pathway was activated during B19V infection of EPCs, and that ATR activation played an important role in B19V infection-induced G2-phase arrest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.