Na2CO3—1.5 H2O2, KClO3, KMnO4, KIO3, and NaOH were selected for dry polishing tests with a 6H-SiC single crystal substrate on a polyurethane polishing pad. The research results showed that all the solid-phase oxidants, except NaOH, could decompose to produce oxygen under the frictional action. After polishing with the five solid-phase oxidants, oxygen was found on the surface of SiC, indicating that all five solid-phase oxidants can have complex tribochemical reactions with SiC. Their reaction products are mainly SiO2 and (SiO2)x. Under the action of friction, due to the high flash point temperature of the polishing interface, the oxygen generated by the decomposition of the solid-phase oxidant could oxidize the surface of SiC and generate a SiO2 oxide layer on the surface of SiC. On the other hand, SiC reacted with H2O and generated a SiO2 oxide layer on the surface of SiC. After polishing with NaOH, the SiO2 oxide layer and soluble Na2SiO3 could be generated on the SiC surface; therefore, the surface material removal rate (MRR) was the highest, and the surface roughness was the largest, after polishing. The lowest MRR was achieved after the dry polishing of SiC with KClO3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.