In situ X-ray diffraction measurements of cesium azide (CsN 3) were performed at high pressures up to 55.4 GPa at room temperature. Three phase transitions were revealed as follows: tetragonal (I4/mcm, Phase II) → monoclinic (C2/m, Phase III) → monoclinic (P2 1 /m or P2 1 , Phase IV) → triclinic (P1 or P 1 , Phase V), at 0.5 GPa, 4.4 GPa, and 15.4 GPa, respectively. During the II-III phase transition, CsN 3 keeps its layered structure; and the azide anions rotate obviously. The compressibility of Phase II is dominated by the repulsions between azide anions. The deformation of unit cell is isotropic in Phase II and IV, and anisotropic in Phase III. With increasing pressures, the monoclinic angle increases in Phase III and then becomes stable in Phase IV. The bulk moduli of Phase II, III, IV, and V are determined to be 18 ± 4 GPa, 20 ± 1 GPa, 27 ± 1 GPa and 34 ± 1 GPa, respectively. The ionic character of alkali azides is found to play a key role in their pressure-induced phase transitions.
The phase analysis of sodium azide (NaN3) has been investigated by in situ synchrotron X-ray diffraction measurements in a diamond anvil cell up to 52.0 GPa at room temperature. Three pressure-induced phase transitions were observed. The phase transition pressures were determined to be 0.3, 17.3, and 28.7 GPa verified by three different pressure transmitting media. The first high pressure phase, α-NaN3 (0.3 ∼ 17.3 GPa), was identified to be monoclinic with a C2/m space group. The β-NaN3 to α-NaN3 transition is a second-order phase transition, accompanied by the shearing of the Na-layers and the tilting of the azide chains. The second high pressure phase, γ-NaN3 (18.4 ∼ 28.7 GPa), has a lower symmetry than the α-NaN3. A further phase transition of γ-NaN3 to δ-NaN3 at 28.7 GPa was observed.
In situ x-ray diffraction study of the hexagonal 6H SiC under pressure and shear in rotational diamond anvil cell is performed that reveals phase transformation to the new high-density amorphous (hda) phase SiC. In contrast to known low-density amorphous SiC, hda-SiC is promoted by pressure and unstable under pressure release. The critical combination of pressure ∼30 GPa and rotation of an anvil of 2160° that causes disordering is determined. In situ x-ray diffraction study of the hexagonal 6H SiC under pressure and shear in rotational diamond anvil cell is performed that reveals phase transformation to the new high-density amorphous (hda) phase SiC. In contrast to known low-density amorphous SiC, hda-SiC is promoted by pressure and unstable under pressure release. The critical combination of pressure ∼30 GPa and rotation of an anvil of 2160
Keywords• that causes disordering is determined.
Potassium azide was investigated by Raman scattering spectroscopy up to a pressure of 55.0 GPa by use of diamond anvil cell at room temperature. A pressure-induced reversible phase transition was revealed. The onset of the phase transition was characterized by the hardening of a previously soft lattice mode at 13.6 GPa. This transition is considered a structural phase transition. Compression induces a symmetry reduction, which is indicated by the splitting of the librational modes, the development of infrared active vibrational modes, and the appearance of other new modes in the external mode region. The new high-pressure phase, with azide ions still in a molecular state, can be preserved down to 1.2 GPa. The Grüneisen parameters for the parent phase were calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.