Background: Hemophagocytic lymphohistiocytosis (HLH) is a relatively rare and life-threatening disorder. Early mortality remains significantly high among patients with HLH. Our aim was to investigate clinical features and risk factors associated with 7-day and 30-day mortality among pediatric HLH patients. We retrospectively collected medical records of patients with discharge diagnosis of HLH between August 2014 and October 2018 from a tertiary children's hospital in China. The main outcome measures were the 7-day and 30-day outcome after hospital admission. The associations between symptoms, concomitant diagnoses, laboratory test results, and the risk of 7-day and 30-day mortality were examined. Results: Among 160 pediatric HLH patients, 18 (11.3%) patients were deceased within 7 days after admission, and 46 (28.8%) patients were deceased within 30 days. The identified strong risk factors (OR > 10 and p < 0.05) for 30-day mortality were myocardial damage, severe pneumonia, respiratory failure, coagulopathy, gastrointestinal disorder, and multiple organ dysfunction syndrome (MODS). Factors strongly associated with 7-day mortality were sepsis, myocardial damage, shock, and respiratory failure. All patients deceased within 7 days developed hepatic dysfunction, coagulopathy, and MODS. Conclusions: The identified risk factors could help to stratify patients with high risk of early death, and need to be considered in the development of treatment protocols. As early mortality of HLH remains high, studies are needed to investigate how to initiate adequate HLH-directed treatment strategies for patients at higher risk of early death.
The difficulties and challenges of applying the HLH-2004 diagnostic criteria to early identification and diagnosis of haemophagocytic lymphohistiocytosis have been fully addressed in previous studies. However, the distribution of the diagnostic time lag of haemophagocytic lymphohistiocytosis and related patient characteristics remain unclear. This study investigated the time lags between symptom onset and diagnosis and between hospital admission and diagnosis among pediatric patients with haemophagocytic lymphohistiocytosis, and identified factors that associated with a shorter or longer diagnostic time lag. The cohort of patients with haemophagocytic lymphohistiocytosis was drawn from a tertiary children's hospital and consisted of 122 pediatric patients. The distributions of symptom-to-diagnosis and admission-to-diagnosis time lags were assessed. Clinical characteristics within 48 h of admission and the fulfillment of HLH-2004 diagnostic criteria were compared among admission-to-diagnosis time lag categories. Logistic regression analyses were conducted to identify factors associated with an admission-to-diagnosis time lag >3 days. The median interval from first symptom onset to HLH diagnosis was 12 days (range 4–71 days) and the median interval from hospital admission to HLH diagnosis was 2 days (range 0–23 days). The following factors were negatively associated with admission-to-diagnosis > 3 days: Epstein–Barr virus infection; admission through pediatric intensive care unit; diagnosis established without NK-cell activity and soluble CD25 tests; the performance of all readily available diagnostic tests for HLH (within 48 and 72 h); concurrent fever, splenomegaly, and cytopenias within 48 h; hemophagocytosis, hypertriglyceridemia and/or hypofibrinogenemia within 48 h; and elevated ferritin, total bilirubin, alanine aminotransferase, and prothrombin time within 48 h. Our findings suggest that performance of adequate diagnostic tests for HLH is essential for early diagnosis of HLH. Once suspected, immediate and adequate diagnostic tests for HLH should be arranged for PICU patients. Improvements in diagnostic procedures and monitoring plans are needed to promote early diagnosis of HLH.
Purpose: Our aim was to investigate the age-associated plasma protein profiles in pneumonia-derived sepsis between infants and toddlers and identify potential ageadapted prognostic markers for poor outcome of pneumonia-derived pediatric sepsis.Experimental Design: A nested case-control study strategy was applied. The plasma proteomes of pneumonia-derived pediatric septic patients with different outcomes between infants and toddlers were respectively analysed compared to their agematched controls.Results: Compared to toddlers, pneumonia-derived sepsis in infants was characterized by increased upregulation of protein processing in the ER, proteasome and antigen processing and presentation; and reduced downregulation in complement and coagulation cascades and cholesterol metabolism. Among them, the pentose phosphate pathway as well as the complement and coagulation cascades were possibly associated with poor outcome of pneumonia-derived sepsis. Furthermore, we confirmed that HP, THBS1, and SAA1/2 were potential prognostic markers for poor outcome of pneumonia-derived sepsis in infant patient groups. Conclusions and ClinicalRelevance: Age-associated plasma protein profiles of pneumonia-derived pediatric septic patients provided potential age-adapted biomarkers for a more precise prognosis of poor outcome in pneumonia-derived pediatric sepsis and helped to improve the survival of septic children.
Background and aimsDeciding when to suspect hemophagocytic lymphohistiocytosis (HLH) and perform diagnostic tests in patients with acute infection of Epstein-Barr virus (EBV) is challenging, given the high prevalence of EBV infection, the life-threatening risk of EBV-HLH, the relatively low incidence of EBV-HLH, and the wide spectrum of disease presentations. The aim of this study was to develop an EBV-HLH screening model for pediatric patients diagnosed with acute infection of EBV.MethodsAn inpatient cohort with 3183 pediatric patients who were diagnosed with active infection of EBV was used to construct and validate the EBV-HLH screening score model. The model parameters were selected from common laboratory parameters using the method of Akaike Information Criterion-optimal selection through cross-validation under logistic regression. Performance of the score was evaluated and compared with the performance of screening methods using the number of cytopenias lineages.ResultsThe EBV-HLH screening score has five parameters, including hemoglobin, platelet, neutrophil, albumin, and lactate dehydrogenase. Using a cut-of value of 29, the scoring model had a sensitivity of 89.2% and a specificity of 89.5% in the validation set. The false negative rate, false positive rate, positive predictive value, and negative predictive value in the validation set was 10.8%, 10.5%, 26.8%, and 99.5%, respectively, similar to that of the training set.ConclusionsWith five common laboratory parameters, the EBV-HLH score provides a simple tool to assist the identification of EBV patients who require further evaluation of HLH. Further studies are needed to evaluate the generalizability of the score and optimize the diagnose process for EBV-HLH.
Background. Sepsis can lead to multiple organ damage, of which the heart is one of the most vulnerable organs. Vagal nerve stimulation can reduce myocardial injury in sepsis and improve survival rates. However, the potential impact of low-level tragus stimulation and disparate cell populations on sepsis-induced myocardial dysfunction remains undetermined. Methods. A cardiac single-cell transcriptomic approach was used for characterizing cardiac cell populations that form the heart. Single-cell mRNA sequencing data were used for selecting all cardiac macrophages from CD45+ cells. Then, echocardiography, western blot, flow cytometry, immunofluorescence, and immunohistochemistry were performed to verify the single-cell mRNA sequencing results. Results. Using single-cell mRNA sequencing data, we uncovered the multiple cell populations contributing to myocardial injury in sepsis under low-level tragus stimulation, thereby illustrating a comprehensive map of the cardiac cellular landscape. Pseudotiming analysis in single-cell sequencing showed that low-level vagal nerve stimulation played an anti-inflammatory role by promoting cardiac monocytes into M2 macrophages, which significantly increased α7nAChR expression in heart tissues. Echocardiography assessment indicated that low-level vagal nerve stimulation could also improve cardiac functions in mice with sepsis-induced myocardial dysfunction. In addition, the heart tissues of mice from the sepsis group with low-level tragus stimulation had significantly lower interleukin-1β expression levels than those from the sepsis group. Flow cytometry analysis showed that different acetylcholine concentrations promoted cardiac monocytes into M2 macrophages in in vitro experiments. Conclusion. Low-level tragus stimulation could improve sepsis-induced myocardial dysfunction by promoting cardiac monocytes to M2 macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.