HJ11 is a novel traditional Chinese medicine developed from the appropriate addition and reduction of Si-Miao-Yong-An decoction, which has been commonly used to treat ischemia-reperfusion (I/R) injury in the clinical setting. However, the mechanism of action of HJ11 components remains unclear. Ferroptosis is a critical factor that promotes myocardial I/R injury, and the pathophysiological ferroptosis-mediated lipid peroxidation causes I/R injury. Therefore, this study explored whether HJ11 decoction ameliorates myocardial I/R injury by attenuating ACSL4-mediated ferroptosis. This study also explored the effect of ACSL4 expression on iron-dependent programmed cell death by preparing a rat model of myocardial I/R injury and oxygen glucose deprivation/reperfusion (OGD/R)–induced H9c2 cells. The results showed that HJ11 decoction improved cardiac function; attenuated I/R injury, apoptosis, oxidative stress, mitochondrial damage, and iron accumulation; and reduced infarct size in the myocardial I/R injury rat model. Additionally, HJ11 decoction suppressed the expression of ferroptosis-promoting proteins [Acyl-CoA synthetase long-chain family member 4 (ACSL4) and cyclooxygenase-2 (COX2)] but promoted the expression of ferroptosis-inhibiting proteins [ferritin heavy chain 1 (FTH1) and glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4)] in the myocardial tissues of the I/R injury rat model. Similar results were found with the OGD/R-induced H9c2 cells. Interestingly, ACSL4 knockdown attenuated iron accumulation, oxidative stress, and ferroptosis in the OGD/R-treated H9c2 cells. However, ACSL4 overexpression counteracted the inhibitory effect of the HJ11 decoction on OGD/R-triggered oxidative stress and ferroptosis in H9c2 cells. These findings suggest that HJ11 decoction restrained the development of myocardial I/R injury by regulating ACSL4-mediated ferroptosis. Thus, HJ11 decoction may be an effective medication to treat myocardial I/R injury.
HIV/AIDS pandemic remains the world's most severe public health challenge, especially for HIV/AIDS immunological nonresponders (HIV/AIDS‐INRs), who tend to have higher mortality. Due to the advantages in promoting patients' immune reconstitution, Traditional Chinese medicine (TCM) has become one of the mainstays of complementary treatments for HIV/AIDS‐INRs. Given that effective TCM treatments largely depend on precise syndrome differentiation, there is an increasing interest in exploring biological evidence for the classification of TCM syndromes in HIV/AIDS‐INRs. In our study, to identify the typical HIV/AIDS‐INRs syndrome, an epidemiological survey was first conducted in the Liangshan prefecture (China), a high HIV/AIDS prevalence region. The key TCM syndrome, Yang deficiency of spleen and kidney (YDSK), was evaluated by using a tandem mass tag combined with liquid chromatography–tandem mass spectrometry (TMT‐LC–MS/MS). A total of 62 differentially expressed proteins (DEPs) of YDSK syndrome compared with healthy people were screened out. Comparative bioinformatics analyses showed that DEPs in YDSK syndrome were mainly associated with response to wounding and acute inflammatory response in the biological process. The pathway annotation is mainly enriched in complement and coagulation cascades. Finally, the YDSK syndrome‐specific DEPs such as HP and S100A9 were verified by ELISA, and confirmed as potential biomarkers for YDSK syndrome. Our study may lay the biological and scientific basis for the specificity of TCM syndromes in HIV/AIDs‐INRs, and may provide more opportunities for the deep understanding of TCM syndromes and the developing more effective and stable TCM treatment for HIV/AIDS‐INRs.
Background Coronary Artery Disease (CAD) is primarily caused by inflammation which is closely linked to the gut microbiota. Si-Miao-Yong-An (SMYA) decoction is a traditional Chinese herbal formula with anti-inflammatory properties that found to be effective against CAD. However, it is still unclear whether SMYA can modulate gut microbiota and whether it contributes to the improvement of CAD by reducing inflammation and regulating the gut microbiota. Methods The identification of components in the SMYA extract was conducted using the HPLC method. A total of four groups of SD rats were orally administered with SMYA for 28 days. The levels of inflammatory biomarkers and myocardial damage biomarkers were measured through ELISA, while echocardiography was used to assess heart function. Histological alterations in the myocardial and colonic tissues were examined following H&E staining. Western blotting was performed to evaluate protein expression, whereas alterations in gut microbiota were determined by 16 s rDNA sequencing. Results SMYA was found to enhance cardiac function and decrease the expression of serum CK-MB and LDH. SMYA was also observed to inhibit the TLR4/NF-κB signaling pathway by downregulating the protein expression of myocardial TLR4, MyD88, and p-P65, leading to a reduction in serum pro-inflammatory factors. SMYA modified the composition of gut microbiota by decreasing the Firmicutes/Bacteroidetes ratio, modulating Prevotellaceae_Ga6A1 and Prevotellaceae_NK3B3 linked to the LPS/TLR4/NF-κB pathway, and increasing beneficial microbiota such as Bacteroidetes, Alloprevotella, and other bacterial species. Moreover, SMYA was found to safeguard the intestinal mucosal and villi structures, elevate the expression of tight junction protein (ZO-1, occludin), and reduce intestinal permeability and inflammation. Conclusions The results indicate that SMYA has the potential to modulate the gut microbiota and protect the intestinal barrier, thereby reducing the translocation of LPS into circulation. SMYA was also found to inhibit the LPS-induced TLR4/NF-κB signaling pathway, leading to a decrease in the release of inflammatory factors, which ultimately mitigated myocardial injury. Hence, SMYA holds promise as a therapeutic agent for the management of CAD.
Traditional Chinese medicine (TCM) has been widely applied as a supplementary therapy of human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS) in China. TCM has a positive effect on improving the quality of life, prolonging life, and ameliorating the symptoms of HIV/AIDS patients. Yang deficiency of spleen and kidney (YDSK) syndrome is a typical deficient TCM syndrome in AIDS patients, and accumulation of heat‐toxicity (AHT) syndrome is a common excessive syndrome in the earlier stage of AIDS. Thus, accurate diagnosis of these two syndromes can improve the targeted treatment effect, and predict the prognosis of the disease. However, the scientific basis of TCM syndromes remains lacking, greatly hindering the accuracy of diagnosis and effectiveness of treatment. In this research, microRNA (miRNA) microarray and quantitative real‐time polymerase chain reaction combined with bioinformatics were used for comparative analysis between YDSK and AHT patients. Significantly differential expressed miRNAs (SDE‐miRNAs) of each TCM syndrome were identified, including hsa‐miR‐766‐3p and hsa‐miR‐1260a and so on, as well hsa‐miR‐6124, hsa‐let‐7g‐5p and so on, for YDSK and AHT, respectively. Biological differences were found between their SDE‐miRNAs based on bioinformatics analyses, for example, ErbB signaling pathway mainly linked to AHT, while focal adhesion dominated in YDSK. Syndrome‐specific SDE‐miRNAs were further identified as potential biomarkers, including hsa‐miR‐30e‐5p, hsa‐miR‐144‐5p for YDSK and hsa‐let‐7g‐5p, hsa‐miR‐126‐3p for AHT, respectively. All of them have laid biological and clinical bases for TCM diagnosis and treatment of AIDS syndrome at the miRNA level, offering potential diagnostic indicators of immune reconstitution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.