BackgroundThe prognostic values of tumor-infiltrating lymphocytes (TILs) and TILs subsets in breast cancer (BC) are uncertain.MethodsA systematic literature search (MEDLINE, Web of Science, EMBASE, and the Cochrane Library to August 2014) was conducted for studies which met the eligibility criteria. The primary clinical outcome was defined as disease-free survival (DFS), overall survival (OS), and BC-specific survival (BCSS). Random or fixed-effects model was adopted to estimate the summary hazard ratio (HR).ResultsTwenty-five published studies comprising 22,964 patients were reviewed. Pooled analysis indicated that TILs were not prognostic markers for DFS and OS in overall population, but related to improved DFS (HR, 0.82; 95% CI, 0.76–0.88) and OS (HR, 0.79; 95% CI, 0.71–0.87) in triple negative breast cancer (TNBC) patients. For TILs subsets, CD8+ lymphocytes were associated with improved DFS (HR, 0.69; 95% CI, 0.56–0.84) and BCSS (HR, 0.78; 95% CI, 0.71–0.86) in overall population, while FOXP3+ lymphocytes were associated with reduced DFS (HR, 1.47; 95% CI, 1.01–2.05) and OS (HR, 1.50; 95% CI, 1.15–1.97). In estrogen receptor (ER) negative patients, CD8+ lymphocytes was also related to better BCSS. In addition, the high density of CD20+, CD3+ or low level of PD-1+ or γδ T lymphocytes indicated increased OS in limited studies.ConclusionTILs and TILs subsets are promising prognostic biomarkers in breast cancer, especially in TNBC.
Background Eating disorders are lethal and heritable; however, the underlying genetic factors are unknown. Binge eating is a highly heritable trait associated with eating disorders that is comorbid with mood and substance use disorders. Therefore, understanding its genetic basis will inform therapeutic development that could improve several comorbid neuropsychiatric conditions. Methods We assessed binge eating in closely related C57BL/6 mouse substrains and in an F2 cross to identify quantitative trait loci (QTL) associated with binge eating. We used gene targeting to validated candidate genetic factors. Finally, we used transcriptome analysis of the striatum via mRNA sequencing (RNA-seq) to identify the premorbid transcriptome and the binge-induced transcriptome to inform molecular mechanisms mediating binge eating susceptibility and establishment. Results C57BL/6NJ but not C57BL/6J mice showed rapid and robust escalation in palatable food consumption. We mapped a single genome-wide significant QTL on chromosome 11 (LOD=7.4) to a missense mutation in cytoplasmic FMR1-interacting protein 2 (Cyfip2). We validated Cyfip2 as a major genetic factor underlying binge eating in heterozygous knockout mice on a C57BL/6N background that showed reduced binge eating toward a wild-type C57BL/6J-like level. Transcriptome analysis of premorbid genetic risk identified the enrichment terms “morphine addiction” and “retrograde endocannabinoid signaling” whereas binge eating resulted in the downregulation of a gene set enriched for decreased myelination, oligodendrocyte differentiation, and expression. Conclusions We identified Cyfip2 as a major significant genetic factor underlying binge eating and provide a behavioral paradigm for future genome-wide association studies in populations with increased genetic complexity.
Reprogramming of immunosuppressive tumor microenvironment (TME) by targeting alternatively activated tumor associated macrophages (M2TAM), myeloid-derived suppressor cells (MDSC), and regulatory T cells (Tregs), represents a promising strategy for developing novel cancer immunotherapy. Prostaglandin E2 (PGE2), an arachidonic acid pathway metabolite and mediator of chronic inflammation, has emerged as a powerful immunosuppressor in the TME through engagement with one or more of its 4 receptors (EP1-EP4). We have developed E7046, an orally bioavailable EP4-specific antagonist and show here that E7046 has specific and potent inhibitory activity on PGE2-mediated pro-tumor myeloid cell differentiation and activation. E7046 treatment reduced the growth or even rejected established tumors in vivo in a manner dependent on both myeloid and CD8+ T cells. Furthermore, co-administration of E7046 and E7777, an IL-2-diphtheria toxin fusion protein that preferentially kills Tregs, synergistically disrupted the myeloid and Treg immunosuppressive networks, resulting in effective and durable anti-tumor immune responses in mouse tumor models. In the TME, E7046 and E7777 markedly increased ratios of CD8+granzymeB+ cytotoxic T cells (CTLs)/live Tregs and of M1-like/M2TAM, and converted a chronic inflammation phenotype into acute inflammation, shown by substantial induction of STAT1/IRF-1 and IFNγ-controlled genes. Notably, E7046 also showed synergistic anti-tumor activity when combined with anti-CTLA-4 antibodies, which have been reported to diminish intratumoral Tregs. Our studies thus reveal a specific myeloid cell differentiation-modifying activity by EP4 blockade and a novel combination of E7046 and E7777 as a means to synergistically mitigate both myeloid and Treg-derived immunosuppression for cancer treatment in preclinical models.
BackgroundEstrogen receptor (ER), progesterone receptor (PgR), HER2, and Ki67 have been increasingly evaluated by core needle biopsy (CNB) and are recommended for classifying breast cancer into molecular subtypes. However, the concordance rate between CNB and open excision biopsy (OEB) has not been well documented.MethodsPatients with paired CNB and OEB samples from Oct. 2009 to Feb. 2012 in Ruijin Hospital were included. ER, PgR, HER2, and Ki67 were determined by immunohistochemistry (IHC). Patients with HER2 IHC 2+ were further examined by FISH. Cutoff value for Ki67 high expression was 14%. Molecular subtypes were constructed as follows: Luminal A, Luminal B, Triple Negative, and HER2 positive.ResultsThere were 298 invasive breast cancer patients analyzed. Concordance rates for ER, PgR, and HER2 were 93.6%, 85.9%, and 96.3%, respectively. Ki67 expression was slightly higher in OEB than in CNB samples (29.3% vs. 26.8%, P = 0.046). Good agreement (κ = 0.658) was demonstrated in evaluating molecular subtypes between CNB and OEB, with a concordance rate of 77.2%. We also used a different Ki67 cutoff value (20%) for determining Luminal A and B subtypes in HR (hormone receptor) +/HER2- diseases and the overall concordance rate was 79.2%. However, using a cut-point of Ki67 either 14% or 20% for both specimens, there will be about 14% of HR+/HER2- specimens that are called Luminal A on CNB and Luminal B on OEB.ConclusionCNB was accurate in determining ER, PgR, and HER2 status as well as non-Luminal molecular subtypes in invasive breast cancer. Ki67 should be retested on OEB samples in HR+/HER2- patients to accurately distinguish Luminal A from B tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.