The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global health emergency that is in urgent need of intervention 1-3. The entry of SARS-CoV-2 into its target cells depends on binding between the receptor-binding domain (RBD) of the viral spike protein and its cellular receptor, angiotensin-converting enzyme 2 (ACE2) 2,4-6. Here we report the isolation and characterization of 206 RBD-specific monoclonal antibodies derived from single B cells from 8 individuals infected with SARS-CoV-2. We identified antibodies that potently neutralize SARS-CoV-2; this activity correlates with competition with ACE2 for binding to RBD. Unexpectedly, the anti-SARS-CoV-2 antibodies and the infected plasma did not cross-react with the RBDs of SARS-CoV or Middle East respiratory syndrome-related coronavirus (MERS-CoV), although there was substantial plasma cross-reactivity to their trimeric spike proteins. Analysis of the crystal structure of RBD-bound antibody revealed that steric hindrance inhibits viral engagement with ACE2, thereby blocking viral entry. These findings suggest that anti-RBD antibodies are largely viral-species-specific inhibitors. The antibodies identified here may be candidates for development of clinical interventions against SARS-CoV-2. The rapid international transmission of SARS-CoV-2 poses a serious global health emergency with no available treatments or vaccine 1-3. SARS-CoV-2 shares substantial genetic and functional similarity with other human betacoronaviruses, including SARS-CoV and MERS-CoV 2,4-8. SARS-CoV-2 uses an envelope homotrimeric spike glycoprotein to interact with the cellular receptor ACE2 2,5,6,8. Binding with ACE2 triggers a cell membrane fusion cascade that results in viral entry. This suggests that disruption of the RBD-ACE2 interaction would block SARS-CoV-2 cell entry. The high-resolution structure of SARS-CoV-2 RBD bound to the N-terminal peptidase domain of ACE2 has recently been determined 6-8. The ACE2-binding mechanism is nearly identical between SARS-CoV-2 and SARS-CoV RBDs 7-10. Animal studies on RBD-based vaccines against SARS-CoV and MERS-CoV have shown strong polyclonal antibody responses that inhibit viral entry 11,12. These findings suggest that anti-RBD antibodies should effectively block SARS-CoV-2 entry. In this study, we report on RBD-specific monoclonal antibodies obtained from individuals infected with SARS-CoV-2. Plasma antibody response against SARS-CoV-2 We collected cross-sectional and longitudinal blood samples from eight patients infected with SARS-CoV-2, who were infected during the early outbreak in Shenzhen (Supplementary Table 1). Samples were named according to patient ID and A, B, or C depending on when they were collected. Six patients (P1 to P4, P8 and P16) had recently travelled to Wuhan and the others (P5 and P22) had direct contact with people who had recently been in Wuhan. P1 to P5 comprise a family cluster, including the first documented case of human-to-human transmission...
Neutralizing antibodies (nAbs) to SARS-CoV-2 hold powerful potentials for clinical interventions against COVID-19 disease. However, their common genetic and biologic features remain elusive. Here we interrogate a total of 165 antibodies from eight COVID-19 patients, and find that potent nAbs from different patients have disproportionally high representation of IGHV3-53/3-66 usage, and therefore termed as public antibodies. Crystal structural comparison of these antibodies reveals they share similar angle of approach to RBD, overlap in buried surface and binding residues on RBD, and have substantial spatial clash with receptor angiotensin-converting enzyme-2 (ACE2) in binding to RBD. Site-directed mutagenesis confirms these common binding features although some minor differences are found. One representative antibody, P5A-3C8, demonstrates extraordinarily protective efficacy in a golden Syrian hamster model against SARS-CoV-2 infection. However, virus escape analysis identifies a single natural mutation in RBD, namely K417N found in B.1.351 variant from South Africa, abolished the neutralizing activity of these public antibodies. The discovery of public antibodies and shared escape mutation highlight the intricate relationship between antibody response and SARS-CoV-2, and provide critical reference for the development of antibody and vaccine strategies to overcome the antigenic variation of SARS-CoV-2.
The emergence and rapid spread of the B.1.1.7 lineage (VOC-202012/01) SARS-CoV-2 variant has aroused global concern. The N501Y substitution is the only mutation in the interface between the RBD of B.1.1.7 and ACE2, raising concerns that its recognition by neutralizing antibodies may be affected. Here, we assessed the neutralizing activity and binding affinity of a panel of 12 monoclonal antibodies against the wild type and N501Y mutant SARS-CoV-2 pseudovirus and RBD protein, respectively. We found that the neutralization activity and binding affinity of most detected antibodies (10 out of 12) were unaffected, although the N501Y substitution decreased the neutralizing and binding activities of CB6 and increased that of BD-23. These findings could be of value in the development of therapeutic antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.