Information on placental transfer and adverse outcomes of short-chain per- and polyfluoroalkyl substance (PFASs) is limited, and factors responsible for PFAS placental transfer are still unclear. In the present study, concentrations of 21 PFASs were analyzed in 132 paired maternal and cord serum samples collected from residents in Beijing, China, and the placental transfer efficiency (PTE) of each PFAS was calculated. PTEs of short-chain perfluoroalkyl acids (PFAAs), including PFBA (146%), PFBS (97%), PFPeA (118%), and PFHxA (110%), were first reported, and a complete U-shaped trend of PTEs from C4 to C13 of perfluoroalkyl carboxylic acids (PFCAs) was obtained. Positive association between maternal weight and PTE of perfluorooctanesulfonate (PFOS) (p < 0.05) and negative association between maternal PFBA concentration and birth length (p < 0.01) were observed. Using in vitro experiments, we further determined equilibrium dissociation constants (K ds) of human serum albumin (HSA)–PFAS complexes (K d‑HP), serum proteins–PFAS complexes (K d‑SP), and liver-fatty acid binding protein (L-FABP)–PFAS complexes (K d‑LP) and found that they were all significantly correlated with PTEs of PFASs. The correlation coefficient was 0.92, 0.89, and 0.86, respectively (p < 0.01 in all three tests), suggesting that K ds of protein (serum)–PFAS complexes can play an important role in trans-placental transfer of PFASs in human and K d‑HP plays a pivotal role.
There is considerable controversy regarding the tolerance of diabetic hearts to ischaemia and the underlying mechanisms responsible for the increased heart tolerance to ischamia remain uncertain. In the present study, we observed, in vitro, type 1 diabetic heart responses to ischaemia and reperfusion at different degrees of hyperglycaemia. In addition, the possible role of increased osmolarity in cardioprotection due to hyperglycaemia was evaluated. Hearts from 3 week streptozocin-induced diabetic rats were isolated and perfused in a Langendorff apparatus and subjected to 30 min ischaemia and 30 min reperfusion. Cardiac function and the electrocardiogram were recorded. Myocardial content of osmolarity associated heat shock protein (hsp) 90, heme oxygenase (HO)-1 and anti-oxidant enzymes were determined in diabetic or hyperosmotic solution-perfused hearts using western blot. The hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG; 2 x 10(-7) mol/L) or the nitric oxide synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (1 x 10(-5) mol/L) was added to the perfusate to observe the effects of hsp90 inhibition and hsp90-associated endothelial NOS on ischaemic responses of diabetic hearts. Compared with normal control rats, diabetic hearts with severe hyperglycaemia (blood glucose > 20 mmol/L) showed markedly improved postischaemic heart function with fewer reperfusion arrhythmias. Mild hyperglycaemia (< 12 mmol/L) exhibited no significant cardioprotection. Elevated expression of hsp90 accompanied the enhanced resistance to ischaemia in diabetic hearts, which was abrogated by 17-AAG. In the presence of the NOS inhibitor, heart function was preserved, whereas reperfusion arrhythmias were increased in diabetes. Diabetic hearts also had markedly elevated HO-1 and catalase, with no significant change in superoxide dismutase. Hyperosmotic perfusion with glucose or mannitol also increased myocardial hsp90 and catalase. The present findings reveal that heart resistance to ischaemia is increased in short-term type 1 diabetes with severe hyperglycaemia. Elevated osmolarity caused by significant hyperglycaemia may contribute to the enhanced myocardial activity against oxidative injury during ischaemia and reperfusion.
The presence of anthropogenically emitted chlorinated paraffins (CPs) has been reported in the pristine regions, providing evidence of their long-range transport. This study comprehensively analyzed the short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in both gas and particle phases at King George Island, West Antarctica (the Chinese Great Wall Station), from 2014 to 2018. The atmospheric levels of CPs ranged between 71.4 and 4230 pg/m3, with an increasing temporal trend during the sampling time. Three different models (J–P model, H–B model, and L–M–Y model) were built to estimate the progress of gas/particle partitioning of CPs at the measurement site. Furthermore, we compared the measured data of the gas/particle partitioning with the data estimated using three different models. We found that the steady-state model (L–M–Y model) was more suitable for investigating the gas/particle partitioning of CPs instead of equilibrium state models (J–P model and H–B model). The result indicated that steady-state approximation rather than the equilibrium state represents the most predominant contribution to the transport of CPs to the Antarctic region. The steady-state further made it conducive to sustaining the levels of CPs for a more extended period in the atmosphere of West Antarctica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.