Loss-of-function mutations in the human voltage-gated sodium channel Na V 1.7 result in a congenital indifference to pain. Selective inhibitors of Na V 1.7 are therefore likely to be powerful analgesics for treating a broad range of pain conditions. Herein we describe the identification of μ-SLPTX-Ssm6a, a unique 46-residue peptide from centipede venom that potently inhibits Na V 1.7 with an IC 50 of ∼25 nM. μ-SLPTX-Ssm6a has more than 150-fold selectivity for Na V 1.7 over all other human Na V subtypes, with the exception of Na V 1.2, for which the selectivity is 32-fold. μ-SLPTX-Ssm6a contains three disulfide bonds with a unique connectivity pattern, and it has no significant sequence homology with any previously characterized peptide or protein. μ-SLPTX-Ssm6a proved to be a more potent analgesic than morphine in a rodent model of chemicalinduced pain, and it was equipotent with morphine in rodent models of thermal and acid-induced pain. This study establishes μ-SPTX-Ssm6a as a promising lead molecule for the development of novel analgesics targeting Na V 1.7, which might be suitable for treating a wide range of human pain pathologies.chronic pain | drug discovery | peptide therapeutic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.