δ-opioid receptors (DORs) form heteromers with μ-opioid receptors (MORs) and negatively regulate MOR-mediated spinal analgesia. However, the underlying mechanism remains largely unclear. The present study shows that the activity of MORs can be enhanced by preventing MORs from DOR-mediated codegradation. Treatment with DOR-specific agonists led to endocytosis of both DORs and MORs. These receptors were further processed for ubiquitination and lysosomal degradation, resulting in a reduction of surface MORs. Such effects were attenuated by treatment with an interfering peptide containing the first transmembrane domain of MOR (MOR(TM1)), which interacted with DORs and disrupted the MOR/DOR interaction. Furthermore, the systemically applied fusion protein consisting of MOR(TM1) and TAT at the C terminus could disrupt the MOR/DOR interaction in the mouse spinal cord, enhance the morphine analgesia, and reduce the antinociceptive tolerance to morphine. Thus, dissociation of MORs from DORs in the cell membrane is a potential strategy to improve opioid analgesic therapies.
(+)-Lingzhiol and (-)-lingzhiol, a pair of rotary door-shaped meroterpenoidal enantiomers, were isolated from Ganoderma lucidum. Their structures were identified by spectroscopic methods and X-ray diffraction crystallography. Lingzhiol bears an unusual 5/5/6/6 ring system characteristic of sharing a C-3'-C-7' axis. Biological evaluation showed that (+)-lingzhiol or (-)-lingzhiol could selectively inhibit the phosphorylation of Smad3 in TGF-β1-induced rat renal proximal tubular cells and activate Nrf2/Keap1 in mesangial cells under diabetic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.