Autosomal recessive polycystic kidney disease is caused by mutations in PKHD1, which encodes the membrane-associated receptor-like protein fibrocystin/polyductin (FPC). FPC associates with the primary cilia of epithelial cells and co-localizes with the Pkd2 gene product polycystin-2 (PC2), suggesting that these two proteins may function in a common molecular pathway. For investigation of this, a mouse model with a gene-targeted mutation in Pkhd1 that recapitulates phenotypic characteristics of human autosomal recessive polycystic kidney disease was produced. The absence of FPC is associated with aberrant ciliogenesis in the kidneys of Pkhd1-deficient mice. It was found that the COOH-terminus of FPC and the NH2-terminus of PC2 interact and that lack of FPC reduced PC2 expression but not vice versa, suggesting that PC2 may function immediately downstream of FPC in vivo. PC2-channel activities were dysregulated in cultured renal epithelial cells derived from Pkhd1 mutant mice, further supporting that both cystoproteins function in a common pathway. In addition, mice with mutations in both Pkhd1 and Pkd2 had a more severe renal cystic phenotype than mice with single mutations, suggesting that FPC acts as a genetic modifier for disease severity in autosomal dominant polycystic kidney disease that results from Pkd2 mutations. It is concluded that a functional and molecular interaction exists between FPC and PC2 in vivo.
To investigate the clinical features of adult patients with hemophagocytic lymphohistiocytosis (HLH) and to explore possible risk factors for death, we retrospectively reviewed the medical records of 103 adult HLH patients hospitalized from 1997 to 2012. We analyzed the underlying diseases, clinical characteristics, 1aboratory findings, outcomes, and prognostic factors. The most common cause of HLH was hematologic malignancies (n = 49), followed by infectious diseases (n = 24) and autoimmune disorders (n = 14); 24 cases were of unknown etiology. Eight patients had a combination of underlying diseases. HLH was clinically characterized by high fever (96.1%), splenomegaly (79.6%), hepatomegaly (65.0%), lymphadenopathy (53.4%), proteinuria (31.1%), skin rash (25.2%), gastrointestinal hemorrhage (14.6%), disseminated intravascular coagulation (13.6%), increased creatinine (7.8%), and central nervous system involvement (12.6%) including altered mental status (9.7%) and cranial hemorrhage (2.9%). Laboratory abnormalities included cytopenia (99.0%), serum ferritin >500 ug/L (98.4%), liver dysfunction (98.1%), hypertriglyceridemia (88.5%), hemophagocytosis in bone marrow smear (87.4%), and hypofibrinogenemia (60.9%).In addition to the treatment they received for the underlying causes, patients received therapy for HLH consisting of corticosteroids, immunosuppressive drugs, and intravenous immunoglobulin. Twenty-six patients (25.2%) recovered after treatment, and 19 of them achieved long-term remission during follow-up. Seventy-seven patients (74.8%) died because of tumor, sepsis, multiple organ failure, or HLH-related organ hemorrhage and coagulopathy. The deceased patients were more likely to be older at disease onset, male, and to present with splenomegaly and thrombocytopenia, compared to the survivors. Treatment for the underlying diseases combined with corticosteroids, immunosuppressive agents, and immunoglobulin therapy may improve the prognosis of HLH. More attention should be paid to high-risk patients to prevent the development of serious complications associated with HLH.
Loss of polycystin-2 (PC2) in mice (Pkd2Ϫ/Ϫ ) results in total body edema, focal hemorrhage, structural cardiac defects, abnormal left-right axis, hepatorenal and pancreatic cysts, and embryonic lethality. The molecular mechanisms by which loss of PC2 leads to these phenotypes remain unknown. We generated a model to allow targeted Pkd2 inactivation using the Cre-loxP system. Global inactivation of Pkd2 produced a phenotype identical to Pkd2 Ϫ/Ϫ mice with undetectable PC2 protein and perinatal lethality.Using various Cre mouse lines, we found that kidney, pancreas, or time-specific deletion of Pkd2 led to cyst formation. In addition, we developed an immortalized renal collecting duct cell line with inactive Pkd2; these cells had aberrant cell-cell contact, ciliogenesis, and tubulomorphogenesis. They also significantly upregulated -catenin, axin2, and cMyc. Our results suggest that loss of PC2 disrupts normal behavior of renal epithelial cells through dysregulation of -catenin-dependent signaling, revealing a potential role for this signaling pathway in PC2-associated ADPKD.
Autosomal dominant (ADPKD) and autosomal recessive (ARPKD) polycystic kidney disease are caused by mutations in Pkd1/Pkd2 and Pkhd1, which encode polycystins (PCs) and fibrocystin/polyductin (FPC). Our recent study reported that a deficiency in FPC increases the severity of cystic disease in Pkd2 mutants and down-regulates PC2 in vivo, but the precise molecular mechanism of these effects is unknown (Kim, I., Fu, Y., Hui, K., Moeckel, G., Mai, W., Li, C., Liang, D., Zhao, P., Ma, J., Chen, X.-Z., George, A. L., Jr., Coffey, R. J., Feng, Z. P., and Wu, G. (2008) ) and show that PC2 down-regulation is accompanied by a phenotype similar to that of Pkhd1 ؊/؊ mice. These findings demonstrate a common mechanism underlying cystogenesis in ADPKD and ARPKD and provide insight into the molecular relationship between PC2 and FPC.
Bicaudal-C (Bic-C) gene was originally discovered in Drosophila melanogaster. The gene product Bic-C is thought to serve as an RNA-binding molecule targeting diverse proteins at the posttranscriptional level. Recent research has shown this gene to be conserved in many species, from Caenorhabditis elegans to humans. Disruption of this protein can disturb the normal migration direction of the anterior follicle cell of Drosophila oocytes, while mutation of a mouse Bicc1 (a mouse homologue of Bic-C) results in phenotypes mimicking human hereditary polycystic kidney disease (PKD). However, the cellular function of Bicc1 gene products in mammalian system remains largely unknown. In this study, we established stable IMCD (mouse inner medullary collecting duct) cell lines, in which Bicc1 was silenced by short hairpin RNA inhibition (shRNA). We show that inhibition of Bicc1 disrupted normal tubulomorphogenesis and induced cystogenesis of IMCD cells grown in three dimensional cultures. To determine what factors contributed to the defect, we systematically examined biological changes of Bicc1-silenced IMCD cells. We found that the cells had significant defects in E-cadherin-based cell-cell adhesion, along with abnormalities in actin cytoskeleton organization, cell-extracellular matrix interactions, cell proliferation, and apoptosis. These findings suggest that lack of Bicc1 leads to disruption of normal cell-cell junctions, which in turn impedes establishment of epithelial polarity. These cellular defects may initiate abnormal tubulomorphogenesis and cystogenesis of IMCD cells grown in vitro. The observation of aberrant cellular behaviors in Bicc1-silenced IMCD cells reveal functions for Bicc1 in renal epithelial cells and provides insight into a potential pathogenic mechanism of polycystic kidney disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.