FtsN plays an essential role in promoting the inward synthesis of septal peptidoglycan (sPG) by the FtsWI complex during bacterial cell division. How it achieves this role is unclear. Here we use single-molecule tracking to investigate FtsN’s dynamics during sPG synthesis in E. coli. We show that septal FtsN molecules move processively at ~9 nm s−1, the same as FtsWI molecules engaged in sPG synthesis (termed sPG-track), but much slower than the ~30 nm s−1 speed of inactive FtsWI molecules coupled to FtsZ’s treadmilling dynamics (termed FtsZ-track). Importantly, processive movement of FtsN is exclusively coupled to sPG synthesis and is required to maintain active sPG synthesis by FtsWI. Our findings indicate that FtsN is part of the FtsWI sPG synthesis complex, and that while FtsN is often described as a “trigger” for the initiation for cell wall constriction, it must remain part of the processive FtsWI complex to maintain sPG synthesis activity.
To divide, bacteria must synthesize and remodel their peptidoglycan (PG) cell wall, a protective meshwork that maintains cell shape. FtsZ, a tubulin homolog, dynamically assembles into a midcell band, recruiting division proteins including the PG synthases FtsW and FtsI. FtsWI are activated to synthesize PG and drive constriction at the appropriate time and place, however their activation pathway remains unresolved. In Caulobacter crescentus, FtsWI activity requires FzlA, an essential FtsZ-binding protein. Through time-lapse imaging and single-molecule tracking of C. crescentus FtsW and FzlA in perturbed genetic backgrounds, we demonstrate that FzlA is a limiting constriction activation factor that converts inactive, fast-moving FtsW to an active, slow-moving state. We find that FzlA interacts with the DNA translocase FtsK, and place FtsK genetically in a pathway with FzlA and FtsWI. Misregulation of the FzlA-FtsK-FtsWI pathway leads to heightened DNA damage and cell death. We propose that FzlA integrates the FtsZ ring, chromosome segregation, and PG synthesis to ensure robust and timely constriction during Caulobacter division.
The bacterial divisome, a macromolecular machine that is composed of more than thirty proteins in E. coli, orchestrates the essential process of cell wall constriction during cell division. Novel antimicrobial strategies can target protein-protein interactions within the divisome and will benefit from insights into divisome structure and dynamics. In this work, we combined structure prediction, molecular dynamics simulation, single-molecule imaging, and mutagenesis to construct a model of the core complex of the E. coli divisome composed of the essential septal cell wall synthase complex formed by FtsW and FtsI, and its regulators FtsQ, FtsL, FtsB, and FtsN. We observed extensive interactions in four key regions in the periplasmic domains of the complex. FtsQ, FtsL, and FtsB scaffold FtsI in an extended conformation with the FtsI transpeptidase domain lifted away from the membrane through interactions among the C-terminal domains. FtsN binds between FtsI and FtsL in a region rich in residues with superfission (activating) and dominant negative (inhibitory) mutations. Mutagenesis experiments in cellulo and in silico revealed that the essential domain of FtsN functions as a tether to tie FtsI and FtsL together, impacting interactions between the anchor-loop of FtsI and the putative catalytic region of FtsW, suggesting a mechanism of how FtsN activates the cell wall synthesis activities of FtsW and FtsI.
Bacterial transcription has been studied extensively in vitro, which has provided detailed molecular mechanisms of transcription. The in vivo cellular environment, however, may impose different rules on transcription than the homogeneous and well-controlled in vitro environment. How an RNA polymerase (RNAP) molecule searches rapidly through vast nonspecific chromosomal DNA in the three-dimensional nucleoid space and identifies a specific promoter sequence remains elusive. Transcription kinetics in vivo could also be impacted by specific cellular environments including nucleoid organization and nutrient availability. In this work, we investigated the promoter search dynamics and transcription kinetics of RNAP in live E. coli cells. Using single-molecule tracking (SMT) and fluorescence recovery after photobleaching (FRAP) across different genetic, drug inhibition, and growth conditions, we observed that RNAP’s promoter search is facilitated by nonspecific DNA interactions and is largely independent of nucleoid organization, growth condition, transcription activity, or promoter class. RNAP’s transcription kinetics, however, are sensitive to these conditions and mainly modulated at the levels of actively engaged RNAP and the promoter escape rate. Our work establishes a foundation for further mechanistic studies of bacterial transcription in live cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.