The electronic parameters of 25 Werner-type and organometallic ligands have been experimentally determined and ranked on a unprecedented unified 13C NMR scale using safe and easily obtainable complexes of the type trans-[PdBr2( i Pr2-bimy)L] n− ( i Pr2-bimy = 1,3-diisopropylbenzimidazolin-2-ylidene; L = ligand in question) as spectroscopic probes. The methodology is based on the sensitivity of the constant i Pr2-bimy carbene signal to the donor strengths of the varying co-ligands, which even allows detection of backbone and substituent effects more accurately than previous carbonyl-based systems. For the evaluation of N-heterocyclic carbenes (NHCs), a one-pot approach to novel hetero-bis(carbene) complexes bearing two different NHCs is introduced. Furthermore, the first complex of a strongly donating indazolin-3-ylidene ligand is presented. The molecular structures of 10 complex probes have been characterized by single-crystal X-ray diffraction analyses.
Single-molecule localization microscopy (SMLM) in a typical wide-field setup has been widely used for investigating sub-cellular structures with super resolution. However, field-dependent aberrations restrict the field of view (FOV) to only few tens of micrometers. Here, we present a deep learning method for precise localization of spatially variant point emitters (FD-DeepLoc) over a large FOV covering the full chip of a modern sCMOS camera. Using a graphic processing unit (GPU) based vectorial PSF fitter, we can fast and accurately model the spatially variant point spread function (PSF) of a high numerical aperture (NA) objective in the entire FOV. Combined with deformable mirror based optimal PSF engineering, we demonstrate high-accuracy 3D SMLM over a volume of ~180 × 180 × 5 μm 3 , allowing us to image mitochondria and nuclear pore complex in the entire cells in a single imaging cycle without hardware scanning -a 100-fold increase in throughput compared to the state-of-the-art.
The emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes. We engineered penicillin G acylases to distinguish among free amino moieties of insulin (two at amino termini and an internal lysine) and manipulate cleavable phenylacetamide groups in a programmable manner to form protected insulin derivatives. This enables selective and specific chemical ligation to synthesize homogeneous bioconjugates, improving yield and purity compared to the existing methods, and generally opens avenues in the functionalization of native proteins to access biological probes or drugs.
Nanopores comprise a versatile class of membrane proteins that carry out a range of key physiological functions and are increasingly developed for different biotechnological applications. Yet, a capacity to study and engineer protein nanopores by combinatorial means has so far been hampered by a lack of suitable assays that combine sufficient experimental resolution with throughput. Addressing this technological gap, the functional nanopore (FuN) screen now provides a quantitative and dynamic readout of nanopore assembly and function in the context of the inner membrane of Escherichia coli. The assay is based on genetically encoded fluorescent protein sensors that resolve the nanopore-dependent influx of Ca 2+ across the inner membrane of E. coli. Illustrating its versatile capacity, the FuN screen is first applied to dissect the molecular features that underlie the assembly and stability of nanopores formed by the S 21 68 holin. In a subsequent step, nanopores are engineered by recombining the transmembrane module of S 21 68 with different ring-shaped oligomeric protein structures that feature defined hexa-, hepta-, and octameric geometries. Library screening highlights substantial plasticity in the ability of the S 21 68 transmembrane module to oligomerize in alternative geometries, while the functional properties of the resultant nanopores can be fine-tuned through the identity of the connecting linkers. Overall, the FuN screen is anticipated to facilitate both fundamental studies and complex nanopore engineering endeavors with many potential applications in biomedicine, biotechnology, and synthetic biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.