Summary Interleukin (IL)-23 and CD4+ T helper-17 (Th17) cells are thought to be critical in the development of psoriasis. Here, we report that IL-23 predominantly stimulated dermal γδT cells to produce IL-17 that led to disease progression. Dermal γδT cells constitutively expressed the IL-23 receptor (IL-23R), RORγt, and various chemokine receptors. IL-17 production from dermal γδT cells was independent of αβT cells. The epidermal hyperplasia and inflammation induced by IL-23 were significantly decreased in T cell receptor δ deficient (Tcrd−/−) and IL-17 receptor deficient (Il17ra−/−) mice but occurred normally in Tcra−/− mice. Imiquimod-induced skin pathology was also significantly decreased in Tcrd−/− mice. Perhaps further promoting disease progression, IL-23 stimulated dermal γδT cell expansion. In psoriasis patients, γδT cells were also greatly increased in affected skin and produced large amounts of IL-17. Thus, IL-23-responsive dermal γδ T cells are the major IL-17 producers in the skin and may represent a novel target for the treatment of psoriasis.
Cushing's disease, also known as adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (PAs) that cause excess cortisol production, accounts for up to 85% of corticotrophin-dependent Cushing's syndrome cases. However, the genetic alterations in this disease are unclear. Here, we performed whole-exome sequencing of DNA derived from 12 ACTH-secreting PAs and matched blood samples, which revealed three types of somatic mutations in a candidate gene, USP8 (encoding ubiquitin-specific protease 8), exclusively in exon 14 in 8 of 12 ACTH-secreting PAs. We further evaluated somatic USP8 mutations in additional 258 PAs by Sanger sequencing. Targeted sequencing further identified a total of 17 types of USP8 variants in 67 of 108 ACTH-secreting PAs (62.04%). However, none of these mutations was detected in other types of PAs (n = 150). These mutations aggregate within the 14-3-3 binding motif of USP8 and disrupt the interaction between USP8 and 14-3-3 protein, resulting in an elevated capacity to protect EGFR from lysosomal degradation. Accordingly, PAs with mutated USP8 display a higher incidence of EGFR expression, elevated EGFR protein abundance and mRNA expression levels of POMC, which encodes the precursor of ACTH. PAs with mutated USP8 are significantly smaller in size and have higher ACTH production than wild-type PAs. In surgically resected primary USP8-mutated tumor cells, USP8 knockdown or blocking EGFR effectively attenuates ACTH secretion. Taken together, somatic gain-of-function USP8 mutations are common and contribute to ACTH overproduction in Cushing's disease. Inhibition of USP8 or EGFR is promising for treating USP8-mutated corticotrophin adenoma. Our study highlights the potentially functional mutated gene in Cushing's disease and provides insights into the therapeutics of this disease.
We report the first large genome-wide association study (GWAS) in a Chinese population to identify susceptibility variants for psoriasis using a two-stage case-control design. In the first stage, we carried out a genome-wide association analysis in 1,139 cases and 1,132 controls of Chinese Han ancestry using Illumina Human 610-Quad BeadChips. In the second stage, we took top SNPs forward for replication in two independent samples of 5,182 cases and 6,516 controls of Chinese Han ancestry, and 539 cases and 824 controls of Chinese Uygur ancestry. In addition to the strong replication for two known susceptibility loci MHC (rs1265181, P = 1.93 x 10(-208), OR = 22.62) and IL12B (rs3213094, P(combined) = 2.58 x 10(-26), OR = 0.78), we identified a new susceptibility locus within the LCE gene cluster on 1q21 (rs4085613, P(combined) = 6.69 x 10(-30), OR = 0.76).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.