BackgroundMultidrug resistance is the main obstacle for hepatocellular carcinoma (HCC) treatment. miR-32-5p is involved in HCC progression but its function in multidrug resistance is still unclear. Here we aim to find out the function of miR-32-5p in inducing multidrug resistance and its underlying mechanisms of transforming sensitive cell to resistant cell.MethodsWe detected the expression of miR-32-5p and PTEN in the multidrug-resistant cell line (Bel/5-FU) and the sensitive cell line (Bel7402), HCC and para-carcinoma liver tissues through real-time PCR. Dual-luciferase reporter assay verified PTEN is the target of miR-32-5p. Exosomes from sensitive and multidrug resistant cell line were obtained and confirmed through ultracentrifuge and Nano Analyzer. Gain- and loss-of-function experiments, rescue experiments, a PI3K/Akt pathway inhibitor, an exosome biogenesis inhibitor, and nude mice xenograft models were used to determine the underlying mechanisms of miR-32-5p and PTEN, as well as exosomal miR-32-5p in inducing multidrug resistance in vitro and in vivo.ResultsmiR-32-5p was significantly elevated but PTEN was reduced in Bel/5-FU. An inverse correlation between miR-32-5p and PTEN was confirmed in HCC cell lines and patients; moreover, high expression of miR-32-5p and low expression of PTEN were positively associated with poor prognosis. Over-expression of miR-32-5p activated the PI3K/Akt pathway by suppressing PTEN and induced multidrug resistance via exosomes through promoting angiogenesis and epithelial-mesenchymal transition (EMT).ConclusionsOur study demonstrated that the multidrug-resistant cell, Bel/5-FU delivers miR-32-5p to sensitive cell, Bel7402 by exosomes and activates the PI3K/Akt pathway to further induce multidrug resistance by modulating angiogenesis and EMT.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0677-7) contains supplementary material, which is available to authorized users.
Metformin, the most widely administered oral anti-diabetic therapeutic agent, exerts its glucose-lowering effect predominantly via liver kinase B1 (LKB1)-dependent activation of adenosine monophosphate-activated protein kinase (AMPK). Accumulating evidence has demonstrated that metformin possesses potential antitumor effects. However, whether the antitumor effect of metformin is via the LKB1/AMPK signaling pathway remains to be determined. In the current study, the effects of metformin on proliferation, cell cycle progression, and apoptosis of human non-small cell lung cancer (NSCLC) H460 (LKB1-null) and H1299 (LKB1-positive) cells were assessed, and the role of LKB1/AMPK signaling in the anti-growth effects of metformin were investigated. Cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle distribution and apoptosis were assessed by flow cytometry, and protein expression levels were measured by western blotting. Metformin inhibited proliferation, induced significant cell cycle arrest at the G0–G1 phase and increased apoptosis in NSCLC cells in a time- and concentration-dependent manner, regardless of the level of LKB1 protein expression. Furthermore, knockdown of LKB1 with short hairpin RNA (shRNA) did not affect the antiproliferative effect of metformin in the H1299 cells. Metformin stimulated AMPK phosphorylation and subsequently suppressed the phosphorylation of mammalian target of rapamycin and its downstream effector, 70-kDa ribosomal protein S6 kinase in the two cell lines. These effects were abrogated by silencing AMPK with small interfering RNA (siRNA). In addition, knockdown of AMPK with siRNA inhibited the effect of metformin on cell proliferation in the two cell lines. These results provide evidence that the growth inhibition of metformin in NSCLC cells is mediated by LKB1-independent activation of AMPK, indicating that metformin may be a potential therapeutic agent for the treatment of human NSCLC.
Expression of lymphoid enhancer factor 1 (LEF1) is frequently altered in different human cancers. This study aimed to assess LEF1 expression in colon cancer tissues and to explore changed phenotypes, gene expressions, and the possible mechanism after knocked down LEF1 expression in colon cancer cell lines. A total of 106 colon cancer and matched paratumorous normal tissues were used to assess LEF1 expression using immunohistochemistry and qRT-PCR. LEF1 lentivirus was used to knockdown LEF1 expression for the assessment of cell viability, cell cycle distribution, apoptosis, and gene expressions. The nude mouse xenograft assay was performed to detect the effects of LEF1 knockdown in vivo. The data showed that the levels of LEF1 mRNA and protein were significantly increased in human colon cancer tissues compared to the matched paratumorous normal tissues and were associated with infiltration depth, lymph node and distant metastases, advanced TNM (tumor-node-metastasis) stages, and shorter overall survival. Furthermore, LEF1 knockdown reduced tumor cell viability, invasion capacity, MMP2 and MMP-9 expression, but induced apoptosis. Nude mouse xenograft assay showed that LEF1 knockdown suppressed tumor formation and growth in vivo. In addition, the expression of Notch pathway-related proteins RBP-jκ and Hes1 was reduced in LEF1 knockdown cells. Taken together, LEF1 protein was overexpressed in colon cancer tissues and knockdown of LEF1 expression inhibited colon cancer growth in vitro and in vivo. These data suggest that targeting of LEF1 expression should be further evaluated for colon cancer prevention and therapy.
Background/Objective. We aimed to examine the expression of lymphoid enhancer factor 1 (LEF1) and Notch2 in colorectal cancer (CRC) and their association with clinicopathologic variables and CRC patients' prognosis. Methods. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot analysis were performed to assess the expression of LEF1 and Notch2 in 184 patients with CRC. Results. We observed a strong negative correlation between LEF1 expression and Notch2 expression (P < 0.001). Both LEF1 mRNA and protein expression increased while the Notch2 mRNA and protein expression decreased in tumor specimens compared with the matched paratumorous normal tissue (P < 0.001). An increase in LEF1 protein expression was significantly associated with lymph node metastases, distant metastasis, advanced TNM (tumor-node-metastasis) stage, and shorter overall survival. A decrease in Notch2 protein expression was associated with poorly differentiated tumors, lymph node metastases, distant metastasis, advanced TNM stage, and shorter overall survival of patients. In the multivariate Cox regression analysis, the LEF1 protein expression (P < 0.001), Notch2 protein expression (P < 0.001), TNM stage (P < 0.001), and the combination of increased LEF1 protein coexpression and decreased Notch2 protein coexpression (P < 0.001) were found to be independent prognostic indicators in CRC. Conclusion. Our results suggest that increased LEF1 coexpression and decreased Notch2 coexpression represent a risk factor for poor overall survival of CRC patients.
Liver kinase B1 (LKB1) as a tumor suppression gene that is associated with various kinds of cancers, including lung cancer. In this study, we found that the effect of LKB1 on tumor growth was dependent on its subcellular expression in A549 and HCC827 cells. Full‐length LKB1 decreased the proliferation and clonogenicity of A549‐LKB1 and HCC827‐LKB1 cells, but increased their apoptosis. Opposite effects were observed in A549‐LKB1s and HCC827‐LKB1S cells that overexpressed truncated LKB1 without the nuclear localization sequence. The truncated cytoplasmic LKB1 enhanced the growth of implanted tumors in vivo. The truncated cytoplasmic LKB1 promoted autophagy, which was independent of AMP‐activated protein kinase and mTOR signaling in A549 and HCC827 cells. Further characterization indicated that higher levels of cytoplasmic LKB1 expression were associated with advanced TNM stage and reduced overall survival (OS) in 190 patients with adenocarcinoma. In contrast, high nuclear expression of LKB1 is associated with early TNM stage and longer OS. The high level of cytoplasmic LKB1 expression was an independent risk factor for poor overall survival in patients with adenocarcinoma. Together, our results revealed that cytoplasmic LKB1 promotes the growth of lung adenocarcinoma and could be a prognostic marker for lung adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.