Adeno-associated virus (AAV) forms the basis for several commercial gene therapy products and for countless gene transfer vectors derived from natural or synthetic viral isolates that are under intense preclinical evaluation. Here, we report a versatile pipeline that enables the direct side-by-side comparison of pre-selected AAV capsids in high-throughput and in the same animal, by combining DNA/RNA barcoding with multiplexed next-generation sequencing. For validation, we create three independent libraries comprising 183 different AAV variants including widely used benchmarks and screened them in all major tissues in adult mice. Thereby, we discover a peptide-displaying AAV9 mutant called AAVMYO that exhibits superior efficiency and specificity in the musculature including skeletal muscle, heart and diaphragm following peripheral delivery, and that holds great potential for muscle gene therapy. Our comprehensive methodology is compatible with any capsids, targets and species, and will thus facilitate and accelerate the stratification of optimal AAV vectors for human gene therapy.
Parvoviruses are highly attractive templates for the engineering of safe, efficient, and specific gene therapy vectors, as best exemplified by adeno-associated virus (AAV). Another candidate that currently garners increasing attention is human bocavirus 1 (HBoV1). Notably, HBoV1 capsids can cross-package recombinant (r)AAV2 genomes, yielding rAAV2/HBoV1 chimeras that specifically transduce polarized human airway epithelia (pHAEs). Here, we largely expanded the repertoire of rAAV/BoV chimeras, by assembling packaging plasmids encoding the capsid genes of four additional primate bocaviruses, HBoV2–4 and GBoV (Gorilla BoV). Capsid protein expression and efficient rAAV cross-packaging were validated by immunoblotting and qPCR, respectively. Interestingly, not only HBoV1 but also HBoV4 and GBoV transduced pHAEs as well as primary human lung organoids. Flow cytometry analysis of pHAEs revealed distinct cellular specificities between the BoV isolates, with HBoV1 targeting ciliated, club, and KRT5+ basal cells, whereas HBoV4 showed a preference for KRT5+ basal cells. Surprisingly, primary human hepatocytes, skeletal muscle cells, and T cells were also highly amenable to rAAV/BoV transduction. Finally, we adapted our pipeline for AAV capsid gene shuffling to all five BoV isolates. Collectively, our chimeric rAAV/BoV vectors and bocaviral capsid library represent valuable new resources to dissect BoV biology and to breed unique gene therapy vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.