We describe a distinct retinal disorder, autosomal-recessive bestrophinopathy (ARB), that is consequent upon biallelic mutation in BEST1 and is associated with central visual loss, a characteristic retinopathy, an absent electro-oculogram light rise, and a reduced electroretinogram. Heterozygous mutations in BEST1 have previously been found to cause the two dominantly inherited disorders, Best macular dystrophy and autosomal-dominant vitreoretinochoroidopathy. The transmembrane protein bestrophin-1, encoded by BEST1, is located at the basolateral membrane of the retinal pigment epithelium in which it probably functions as a Cl(-) channel. We sequenced BEST1 in five families, identifying DNA variants in each of ten alleles. These encoded six different missense variants and one nonsense variant. The alleles segregated appropriately for a recessive disorder in each family. No clinical or electrophysiological abnormalities were identified in any heterozygotes. We conducted whole-cell patch-clamping of HEK293 cells transfected with bestrophin-1 to measure the Cl(-) current. Two ARB missense isoforms severely reduced channel activity. However, unlike two other alleles previously associated with Best disease, cotransfection with wild-type bestrophin-1 did not impair the formation of active wild-type bestrophin-1 channels, consistent with the recessive nature of the condition. We propose that ARB is the null phenotype of bestrophin-1 in humans.
Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity
We demonstrate convincing evidence that SUFU mutations can cause classical Gorlin syndrome. Our study redefines the risk of medulloblastoma in Gorlin syndrome, dependent on the underlying causative gene. Previous reports have found a 5% risk of medulloblastoma in Gorlin syndrome. We found a < 2% risk in PTCH1 mutation-positive individuals, with a risk up to 20× higher in SUFU mutation-positive individuals. Our data suggest childhood brain magnetic resonance imaging surveillance is justified in SUFU-related, but not PTCH1-related, Gorlin syndrome.
Perrault syndrome is a genetically and clinically heterogeneous autosomal-recessive condition characterized by sensorineural hearing loss and ovarian failure. By a combination of linkage analysis, homozygosity mapping, and exome sequencing in three families, we identified mutations in CLPP as the likely cause of this phenotype. In each family, affected individuals were homozygous for a different pathogenic CLPP allele: c.433A>C (p.Thr145Pro), c.440G>C (p.Cys147Ser), or an experimentally demonstrated splice-donor-site mutation, c.270+4A>G. CLPP, a component of a mitochondrial ATP-dependent proteolytic complex, is a highly conserved endopeptidase encoded by CLPP and forms an element of the evolutionarily ancient mitochondrial unfolded-protein response (UPR(mt)) stress signaling pathway. Crystal-structure modeling suggests that both substitutions would alter the structure of the CLPP barrel chamber that captures unfolded proteins and exposes them to proteolysis. Together with the previous identification of mutations in HARS2, encoding mitochondrial histidyl-tRNA synthetase, mutations in CLPP expose dysfunction of mitochondrial protein homeostasis as a cause of Perrault syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.