Non-symmorphic crystals are generating great interest as they are commonly found in quantum materials, like iron-based superconductors, heavy-fermion compounds, and topological semimetals. A new type of surface state, a floating band, was recently discovered in the nodal-line semimetal ZrSiSe, but also exists in many non-symmorphic crystals. Little is known about its physical properties. Here, we employ scanning tunneling microscopy to measure the quasiparticle interference of the floating band state on ZrSiSe (001) surface and discover rotational symmetry breaking interference, healing effect and half-missing-type anomalous Umklapp scattering. Using simulation and theoretical analysis we establish that the phenomena are characteristic properties of a floating band surface state. Moreover, we uncover that the half-missing Umklapp process is derived from the glide mirror symmetry, thus identify a non-symmorphic effect on quasiparticle interferences. Our results may pave a way towards potential new applications of nanoelectronics.
Sphingosine kinase 1 (SphK1) is the major source of the bioactive lipid and GPCR agonist sphingosine 1phosphate (S1P). Although alterations in SphK1 expression and activity have been detected in various human malignancies, its potential molecular mechanisms in the development and sunitinib resistance of clear cell renal cell carcinoma (ccRCC) remain obscure. In this study, we aim to evaluate the clinical significance of SphK1 and to explore the therapeutic implications of combination approach for ccRCC patients. We identify upregulation of SphK1 significantly associated with poor prognosis of large cohort of ccRCC patients, which contributing to cell proliferation, colony formation, migration and survival. Suppression of SphK1 activity either by shRNA or pharmacologic inhibitior FTY720 suppresses cell growth in vitro and in vivo. A comprehensive phosphoprotein antibody array reveals that SphK1 overexpression promoted RCC progression by regulating the Akt/mTOR pathway. Moreover, FTY720 administration enhanced tumor growth inhibition effect of sunitinib treatment on RCC cells in vitro and in vivo. Our results unraveled that increased SphK1 kinase activation defines an important mechanism for sunitinib resistance, therefore contributes to tumour development and represents therapeutic targets for ccRCC.
ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.