Extracellular matrix (ECM) accumulation in liver fibrosis is caused by the activation of hepatic stellate cells (HSCs). The goal of this study was to develop a 99mTc-labeled N-acetylglucosamine (GlcNAc) that specifically interacts with desmin and vimentin expressed on activated HSCs to monitor the progression and prognosis of liver fibrosis using single-photon emission computed tomography (SPECT) imaging.Methods: GlcNAc-conjugated polyethylenimine (PEI) was first prepared and radiolabeled with 99mTc. Noninvasive SPECT imaging with 99mTc-GlcNAc-PEI was used to assess liver fibrosis in a carbon tetrachloride (CCl4) mouse model. The liver uptake value (LUV) of 99mTc-GlcNAc-PEI was measured by drawing the region of interest (ROI) of the whole liver as previously suggested. The LUV of the CCl4 groups was compared with that of the olive oil group. Next, we estimated the correlation between the results of SPECT imaging and physiological indexes. After treatment with clodronate liposome, the LUV of 99mTc-GlcNAc-PEI in fibrotic mice was compared with that in control mice.Results: 99mTc-GlcNAc-PEI is a hydrophilic compound with high radiochemical purity (>98%) and good stability. It could specifically target desmin and vimentin on the surface of activated HSCs with high affinity (the Kd values were 53.75 ± 9.50 nM and 20.98 ± 3.56 nM, respectively). The LUV of 99mTc-GlcNAc-PEI was significantly different between the CCl4 and control groups as early as 4 weeks of CCl4 administration (3.30 ± 0.160 vs 2.34 ± 0.114%/cc; P ˂ 0.05). There was a strong correlation between the LUV and Sirius Red quantification (R = 0.92, P ˂ 0.001). Compared with control, clodronate liposome treatment reduced the LUV of 99mTc-GlcNAc-PEI (4.62 ± 0.352 vs 2.133 ± 0.414%/cc; P ˂ 0.05).Conclusion: 99mTc-GlcNAc-PEI SPECT/CT was useful in assessing liver fibrosis and monitoring the treatment response.
Assessment of myocardial viability is deemed necessary to aid in clinical decision making whether to recommend revascularization therapy for patients with myocardial infarction (MI). Dianthraquinones such as hypericin (Hyp) selectively accumulate in necrotic myocardium, but were unsuitable for early imaging after administration to assess myocardial viability. Since dianthraquinones can be composed by coupling two molecules of monomeric anthraquinone and the active center can be found by splitting chemical structure, we propose that monomeric anthraquinones may be effective functional groups for necrosis targetability. In this study, eight radioiodinated monomeric anthraquinones were evaluated as novel necrosis avid agents (NAAs) for imaging of necrotic myocardium. All 131I-anthraquinones showed high affinity to necrotic tissues and 131I-rhein emerged as the most promising compound. Infarcts were visualized on SPECT/CT images at 6 h after injection of 131I-rhein, which was earlier than that with 131I-Hyp. Moreover, 131I-rhein showed satisfactory heart-to-blood, heart-to-liver and heart-to-lung ratios for obtaining images of good diagnostic quality. 131I-rhein was a more promising “hot spot imaging” tracer for earlier visualization of necrotic myocardium than 131I-Hyp, which supported further development of radiopharmaceuticals based on rhein for SPECT/CT (123I and 99mTc) or PET/CT imaging (18F and 124I) of myocardial necrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.