Azaleas (Ericaceae) comprise one of the most diverse ornamental plants, renowned for their cultural and economic importance. We present a chromosome-scale genome assembly for Rhododendron simsii, the primary ancestor of azalea cultivars. Genome analyses unveil the remnants of an ancient whole-genome duplication preceding the radiation of most Ericaceae, likely contributing to the genomic architecture of flowering time. Small-scale gene duplications contribute to the expansion of gene families involved in azalea pigment biosynthesis. We reconstruct entire metabolic pathways for anthocyanins and carotenoids and their potential regulatory networks by detailed analysis of time-ordered gene co-expression networks. MYB, bHLH, and WD40 transcription factors may collectively regulate anthocyanin accumulation in R. simsii, particularly at the initial stages of flower coloration, and with WRKY transcription factors controlling progressive flower coloring at later stages. This work provides a cornerstone for understanding the underlying genetics governing flower timing and coloration and could accelerate selective breeding in azalea.
Ginger (Zingiber officinale) is one of the most valued spice plants worldwide; it is prized for its culinary and folk medicinal applications and is therefore of high economic and cultural importance. Here, we present a haplotype-resolved, chromosome-scale assembly for diploid ginger anchored to 11 pseudochromosome pairs with a total length of 3.1 Gb. Remarkable structural variation was identified between haplotypes, and two inversions larger than 15 Mb on chromosome 4 may be associated with ginger infertility. We performed a comprehensive, spatiotemporal, genome-wide analysis of allelic expression patterns, revealing that most alleles are coordinately expressed. The alleles that exhibited the largest differences in expression showed closer proximity to transposable elements, greater coding sequence divergence, more relaxed selection pressure, and more transcription factor binding site differences. We also predicted the transcription factors potentially regulating 6-gingerol biosynthesis. Our allele-aware assembly provides a powerful platform for future functional genomics, molecular breeding, and genome editing in ginger.
Polyploidization plays a key role in plant evolution, but the forces driving the fate of homoeologs in polyploid genomes, i.e., paralogs resulting from a whole-genome duplication (WGD) event, remain to be elucidated. Here, we present a chromosome-scale genome assembly of tetraploid scarlet sage (Salvia splendens), one of the most diverse ornamental plants. We found evidence for three WGD events following an older WGD event shared by most eudicots (the γ event). A comprehensive, spatiotemporal, genome-wide analysis of homoeologs from the most recent WGD unveiled expression asymmetries, which could be associated with genomic rearrangements, transposable element proximity discrepancies, coding sequence variation, selection pressure, and transcription factor binding site differences. The observed differences between homoeologs may reflect the first step toward sub- and/or neofunctionalization. This assembly provides a powerful tool for understanding WGD and gene and genome evolution and is useful in developing functional genomics and genetic engineering strategies for scarlet sage and other Lamiaceae species.
Summary Quercus dentata Thunb., a dominant forest tree species in northern China, has significant ecological and ornamental value due to its adaptability and beautiful autumn coloration, with color changes from green to yellow into red resulting from the autumnal shifts in leaf pigmentation. However, the key genes and molecular regulatory mechanisms for leaf color transition remain to be investigated. First, we presented a high‐quality chromosome‐scale assembly for Q. dentata. This 893.54 Mb sized genome (contig N50 = 4.21 Mb, scaffold N50 = 75.55 Mb; 2n = 24) harbors 31 584 protein‐coding genes. Second, our metabolome analyses uncovered pelargonidin‐3‐O‐glucoside, cyanidin‐3‐O‐arabinoside, and cyanidin‐3‐O‐glucoside as the main pigments involved in leaf color transition. Third, gene co‐expression further identified the MYB‐bHLH‐WD40 (MBW) transcription activation complex as central to anthocyanin biosynthesis regulation. Notably, transcription factor (TF) QdNAC (QD08G038820) was highly co‐expressed with this MBW complex and may regulate anthocyanin accumulation and chlorophyll degradation during leaf senescence through direct interaction with another TF, QdMYB (QD01G020890), as revealed by our further protein–protein and DNA–protein interaction assays. Our high‐quality genome assembly, metabolome, and transcriptome resources further enrich Quercus genomics and will facilitate upcoming exploration of ornamental values and environmental adaptability in this important genus.
The genus Rhododendron (Ericaceae), with more than 1000 species highly diverse in flower color, is providing distinct ornamental values and a model system for flower color studies. Here, we investigated the divergence between two parental species with different flower color widely used for azalea breeding. Gapless genome assembly was generated for the yellow-flowered azalea, R. molle. Comparative genomics found recent proliferation of LTR-RTs, especially Gypsy, has resulted in a 125 Mb (19%) genome size increase in species-specific regions, and a significant amount of dispersed gene duplicates (13402) and pseudogenes (17437). Metabolomic assessment revealed that yellow flower coloration is attributed to the dynamic changes of carotenoids/flavonols biosynthesis and chlorophyll degradation. Time-ordered gene co-expression networks (TO-GCNs) and the comparison confirmed the metabolome and uncovered the specific gene regulatory changes underpinning the distinct flower pigmentation. B3 and ERF TFs were found dominated the gene regulation of carotenoids/flavonols characterized pigmentation in R. molle, while WRKY, ERF, WD40, C2H2, and NAC TFs collectively regulated the anthocyanins characterized pigmentation in the red-flowered R simsii. This study employed a multi-omics strategy in disentangling the complex divergence between two important azaleas and provided references for further functional genetics and molecular breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.