Three‐dimensional carbon nanotube/graphene sandwich structures with CNT pillars grown in between the graphene layers have been developed by chemical vapor deposition. The special structure endows the high‐rate transportation of electrolyte ions and electrons throughout the electrode matrix, resulting in excellent electrochemical performance of this hybrid material.
The synthesis of graphene nanosheets from graphite oxide typically involves harmful chemical reductants that are undesirable for most practical applications of graphene. Here, we demonstrate a green and facile approach to the synthesis of graphene nanosheets based on Fe reduction of exfoliated graphite oxide, resulting in a substantial removal of oxygen functionalities of the graphite oxide. More interestingly, the resulting graphene nanosheets with residual Fe show a high adsorption capacity of 111.62 mg/g for methylene blue at room temperature, as well as easy magnetic separation from the solution. This approach offers a potential for cost-effective, environmentally friendly, and large-scale production of graphene nanosheets.
Most crystalline inorganic materials, except for metals and some layer materials, exhibit bad flexibility because of strong ionic or covalent bonds, while amorphous materials usually display poor electrical properties due to structural disorders. Here, we report the simultaneous realization of extraordinary room temperature flexibility and thermoelectric performance in Ag2Te1–xSx–based materials through amorphization. The coexistence of amorphous main phase and crystallites results in exceptional flexibility and ultralow lattice thermal conductivity. Furthermore, the flexible Ag2Te0.6S0.4 glass exhibits a degenerate semiconductor behavior with a room temperature Hall mobility of ~750 cm2 V−1 s−1 at a carrier concentration of 8.6 × 1018 cm−3, which is at least an order of magnitude higher than other amorphous materials, leading to a thermoelectric power factor also an order of magnitude higher than the best amorphous thermoelectric materials known. The in-plane prototype uni-leg thermoelectric generator made from this material demonstrates its potential for flexible thermoelectric device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.