Summary mi RNA s contribute to plant resistance against pathogens. Previously, we found that the function of miR398b in immunity in rice differs from that in Arabidopsis. However, the underlying mechanisms are unclear. In this study, we characterized the mutants of miR398b target genes and demonstrated that multiple superoxide dismutase genes contribute to miR398b‐regulated rice immunity against the blast fungus Magnaporthe oryzae . Out of the four target genes of miR398b, mutations in Cu/Zn‐Superoxidase Dismutase1 ( CSD 1 ), CSD 2 and Os11g09780 ( Superoxide DismutaseX , SODX ) led to enhanced resistance to M. oryzae and increased hydrogen peroxide (H 2 O 2 ) accumulation. By contrast, mutations in Copper Chaperone for Superoxide Dismutase ( CCSD ) resulted in enhanced susceptibility. Biochemical studies revealed that csd1 , csd2 and sodx displayed altered expression of CSD s and other superoxide dismutase ( SOD ) family members, leading to increased total SOD enzyme activity that positively contributed to higher H 2 O 2 production. By contrast, the ccsd mutant showed CSD protein deletion, resulting in decreased CSD and total SOD enzyme activity. Our results demonstrate the roles of different SOD s in miR398b‐regulated resistance to rice blast disease, and uncover an integrative regulatory network in which miR398b boosts total SOD activity to upregulate H 2 O 2 concentration and thereby improve disease resistance.
Fitness cost is a common phenomenon in rice blast disease-resistance breeding. MiR396 is a highly conserved microRNA (miRNA) family targeting Growth Regulating Factor (OsGRF) genes. Mutation at the target site of miR396 in certain OsGRF gene or blocking miR396 expression leads to increased grain yield. Here we demonstrated that fitness cost can be trade-off in miR396-OsGRFs module via balancing growth and immunity against the blast fungus. The accumulation of miR396 isoforms was significantly increased in a susceptible accession, but fluctuated in a resistant accession upon infection of Magnaporthe oryzae. The transgenic lines over-expressing different miR396 isoforms were highly susceptible to M. oryzae. In contrast, overexpressing target mimicry of miR396 to block its function led to enhanced resistance to M. oryzae in addition to improved yield traits. Moreover, transgenic plants overexpressing OsGRF6, OsGRF7, OsGRF8, and OsGRF9 exhibited enhanced resistance to M. oryzae, but showed different alteration of growth. While overexpression of OsGRF7 led to defects in growth, overexpression of OsGRF6, OsGRF8, and OsGRF9 resulted in better or no significant change of yield traits. Collectively, our results indicate that miR396 negatively regulates rice blast disease- resistance via suppressing multiple OsGRFs, which in turn differentially control growth and yield. Therefore, miR396-OsGRFs could be a potential module to demolish fitness cost in rice blast disease-resistance breeding.
Ustilaginoidea virens (Uv), the causative agent of rice false smut disease, infects developing rice spikelets at the booting stage, and transforms individual grains of the panicle into smut balls. Epidemics of the disease occur when the rice booting and heading stages coincide with rainy days. Using a green fluorescent protein (GFP)-labelled Uv isolate that can form false smut balls on rice panicles, it was found that under high humidity and free water conditions the Uv isolate could colonize leaves of plants belonging to various families including the Poaceae (Oryza sativa, Echinochloa crusgalli, Digitaria sanguinalis and Leptochloa chinensis), the Brassicaceae (Arabidopsis thaliana) and the Solanaceae (Nicotiana benthamiana) without symptoms. Over several days, some conidia could germinate on the leaves of these plants and in water on the surface of Parafilm and cellophane, form hyphae and differentiate conidiophores to generate a large number of secondary conidia, while other conidia were able to directly produce secondary conidia. Conversely, in the absence of water some conidia could either bud to form new conidia or were converted into chlamydospores. These data indicate that Uv is one of a few fungal pathogens reported to have epiphytic characteristics. The rapid generation of a large number of spores on biotic and abiotic surfaces greatly increases the inoculum that can infect rice spikelets, resulting in the occurrence of rice false smut disease epidemics. These findings are important in the development of disease control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.