Protein kinases control cellular decision processes by phosphorylating specific substrates. Thousands of in vivo phosphorylation sites have been identified, mostly by proteome-wide mapping. However, systematically matching these sites to specific kinases is presently infeasible, due to limited specificity of consensus motifs, and the influence of contextual factors, such as protein scaffolds, localization, and expression, on cellular substrate specificity. We have developed an approach (NetworKIN) that augments motif-based predictions with the network context of kinases and phosphoproteins. The latter provides 60%-80% of the computational capability to assign in vivo substrate specificity. NetworKIN pinpoints kinases responsible for specific phosphorylations and yields a 2.5-fold improvement in the accuracy with which phosphorylation networks can be constructed. Applying this approach to DNA damage signaling, we show that 53BP1 and Rad50 are phosphorylated by CDK1 and ATM, respectively. We describe a scalable strategy to evaluate predictions, which suggests that BCLAF1 is a GSK-3 substrate.
The acetyl CoA acyltransferase 2 (ACAA2) is a key enzyme of the fatty acid oxidation pathway, catalyzing the last step of the mitochondrial beta oxidation, thus playing an important role in the fatty acid metabolism. The purpose of this study was to investigate the effect of knocking out ACAA2 on the expression of genes lipoprteinlipase (LPL), peroxisome proliferator‐activated receptor‐γ (PPAR‐γ), fatty acid synthase, fat mass and obesity‐associated gene, adipocyte fatty acid‐binding protein (AP2) in precursor adipocytes and their differentiation into adipocytes. The knockout vector was constructed using CRISPR‐Cas RNA‐guided nuclease technology with an efficiency of 23.80%, and the vector was transfected into precursor adipocyte cells, while an overexpression vector of the ACAA2 gene was also transfected in another group of preadipocytes. Quantitative polymerase chain reaction showed that the expression of the PPAR‐γ, LPL, and AP2 was significantly lower in the knockout compared with the overexpression group, while there was no difference in cell growth. After induction of adipocyte precursor cells into adipocytes using dexamethasone, insulin, and IBMX, oil red staining showed a significantly different number of lipid droplets in the knockout group. These results provide a preliminary indication for a possible involvement of the ACAA2 gene in adipocyte differentiation in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.