Background and Aims
Hepatic macrophages can be activated by many factors such as gut‐derived bacterial components and factors released from damaged hepatocytes. Macrophage polarization toward a proinflammatory phenotype (M1) represents an important event in the disease progression of nonalcoholic fatty liver disease (NAFLD). However, the underlying molecular mechanisms remain incompletely understood. Exosomes have been identified as important mediators for cell–cell communication by transferring various biological components such as microRNAs (miRs), proteins, and lipids. The role of exosomes in crosstalk between hepatocytes and macrophages in disease progression of NAFLD is yet to be explored.
Approach and Results
In the present study, we reported that lipotoxic injury–induced release of hepatocyte exosomes enriched with miR‐192‐5p played a critical role in the activation of M1 macrophages and hepatic inflammation. Serum miR‐192‐5p levels in patients with NAFLD positively correlated with hepatic inflammatory activity score and disease progression. Similarly, the serum miR‐192‐5p level and the number of M1 macrophages, as well as the expression levels of the hepatic proinflammatory mediators, were correlated with disease progression in high‐fat high‐cholesterol diet–fed rat models. Lipotoxic hepatocytes released more miR‐192‐5p‐enriched exosomes than controls, which induced M1 macrophage (cluster of differentiation 11b–positive [CD11b+]/CD86+) activation and increase of inducible nitric oxide synthase, interleukin 6, and tumor necrosis factor alpha expression. Furthermore, hepatocyte‐derived exosomal miR‐192‐5p inhibited the protein expression of the rapamycin‐insensitive companion of mammalian target of rapamycin (Rictor), which further inhibited the phosphorylation levels of Akt and forkhead box transcription factor O1 (FoxO1) and resulted in activation of FoxO1 and subsequent induction of the inflammatory response.
Conclusions
Hepatocyte‐derived exosomal miR‐192‐5p plays a critical role in the activation of proinflammatory macrophages and disease progression of NAFLD through modulating Rictor/Akt/FoxO1 signaling. Serum exosomal miR‐192‐5p represents a potential noninvasive biomarker and therapeutic target for nonalcoholic steatohepatitis.
Recent studies show that YTH domain family 2 (YTHDF2) preferentially binds to mA-containing mRNA regulates localization and stability of the bound mRNA. However, the role of YTHDF2 in pancreatic cancers remains to be elucidated. Here, we find that YTHDF2 expression is up-regulated in pancreatic cancer tissues compared with normal tissues at both mRNA and protein levels, and is higher in clinical patients with later stages of pancreatic cancer, indicating that YTHDF2 possesses potential clinical significance for diagnosis and prognosis of pancreatic cancers. Furthermore, we find that YTHDF2 orchestrates two cellular processes: promotes proliferation and inhibits migration and invasion in pancreatic cancer cells, a phenomenon called "migration-proliferation dichotomy", as well as epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Furthermore, YTHDF2 knockdown significantly increases the total YAP expression, but inhibits TGF-β/Smad signaling, indicating that YTHDF2 regulates EMT probably via YAP signaling. In summary, all these findings suggest that YTHDF2 may be a new predictive biomarker of development of pancreatic cancer, but a serious consideration is needed to treat YTHDF2 as a target for pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.