Abbreviations: ALK, anaplastic lymphoma receptor tyrosine kinase; ATF4, activating transcription factor 4; BNIP3, BCL2/adenovirus E1B 19kDa interacting protein 3; CNTF, ciliary neurotrophic factor; COX8, cytochrome c oxidase subunit VIII; ConA, concanavalin A; CTSB, cathepsin B; CTSL, cathepsin L; CuB, cucurbitacin B; CYCS, cytochrome c, somatic; EGF, epidermal growth factor; EIF2A, eukaryotic initiation factor 2A, 65kDa; EIF2AK2, eukaryotic translation initiation factor 2-a kinase 2; ER, endoplasmic reticulum; ETC, electron transport chain; FOXO1/3, forkhead box O1/3; HDAC3, histone deacetylase 3; HIF1A, hypoxia inducible factor 1, a subunit (basic helix-loop-helix transcription factor); IL6, interleukin 6; IMM, inner mitochondrial membrane; KDR, kinase insert domain receptor; LMP, lysosomal membrane permeabilization; MAPK1, mitogen-activated protein kinase 1; MAP1LC3A, microtubule-associated protein 1 light chain 3 a; miRNA, microRNA; mitoSTAT3, mitochondrial STAT3; MLS, mitochondrial localization sequence; MMP14, matrix metallopeptidase 14 (membrane-inserted); NDUFA13, NADH dehydrogenase (ubiquinone) 1 a subcomplex, 13; NES, nuclear export signal; NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1; NLS, nuclear localization signal; PDGFRB, platelet-derived growth factor receptor, b polypeptide; PRKAA2, protein kinase, AMP-activated, a 2 catalytic subunit; PTPN2, protein tyrosine phosphatase, non-receptor type 2; PTPN6, protein tyrosine phosphatase, non-receptor type 6; PTPN11, protein tyrosine phosphatase, non-receptor type 11; ROS, reactive oxygen species; RTK, receptor tyrosine kinases; SH2, src homology 2; STAT3, signal transducer and activator of transcription 3 (acute-phase response factor); VHL, von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase; XPO1, exportin 1.Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the cla...
C1673T, A1726C, A1727T, C1730G, C1766T, T1768A, C1773T, and C1799G in genotype C are specific for cirrhosis. A1846T and T1674C/G are novel factors independently associated with cirrhosis and HCC, respectively.
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in Escherichia coli, Yersinia pestis, and Mycobacterium smegmatis. Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.