Purpose: We assessed the efficacy and safety of camrelizumab [an anti-programmed death (PD-1) mAb] plus apatinib (a VEGFR-2 tyrosine kinase inhibitor) in patients with advanced hepatocellular carcinoma (HCC). Patients and Methods: This nonrandomized, open-label, multicenter, phase II study enrolled patients with advanced HCC who were treatment-naïve or refractory/intolerant to first-line targeted therapy. Patients received intravenous camrelizumab 200 mg (for bodyweight ≥50 kg) or 3 mg/kg (for bodyweight <50 kg) every 2 weeks plus oral apatinib 250 mg daily. The primary endpoint was objective response rate (ORR) assessed by an independent review committee (IRC) per RECIST v1.1. Results: Seventy patients in the first-line setting and 120 patients in the second-line setting were enrolled. As of January 10, 2020, the ORR was 34.3% [24/70; 95% confidence interval (CI), 23.3–46.6] in the first-line and 22.5% (27/120; 95% CI, 15.4–31.0) in the second-line cohort per IRC. Median progression-free survival in both cohorts was 5.7 months (95% CI, 5.4–7.4) and 5.5 months (95% CI, 3.7–5.6), respectively. The 12-month survival rate was 74.7% (95% CI, 62.5–83.5) and 68.2% (95% CI, 59.0–75.7), respectively. Grade ≥3 treatment-related adverse events (TRAE) were reported in 147 (77.4%) of 190 patients, with the most common being hypertension (34.2%). Serious TRAEs occurred in 55 (28.9%) patients. Two (1.1%) treatment-related deaths occurred. Conclusions: Camrelizumab combined with apatinib showed promising efficacy and manageable safety in patients with advanced HCC in both the first-line and second-line setting. It might represent a novel treatment option for these patients. See related commentary by Pinato et al., p. 908
Photodynamic therapy (PDT), using a combination of chemical photosensitizers (PS) and light, has been successfully applied as a noninvasive therapeutic procedure to treat tumors by inducing apoptosis or necrosis of cancer cells. However, most current clinically used PS have suffered from the instability in physiological conditions which lead to low photodynamic therapy efficacy. Herein, a highly biocompatible poly(dopamine) (PDA) nanoparticle conjugated with Chlorin e6 (referenced as the PDA-Ce6 nanosphere) was designed as a nanotherapeutic agent to achieve simultaneous photodynamic/photothermal therapy (PDT/PTT). Compared to the free Ce6, the PDA-Ce6 nanosphere exhibited significantly higher PDT efficacy against tumor cells, because of the enhanced cellular uptake and subsequently greater reactive oxygen species (ROS) production upon laser irradiation at 670 nm. Meanwhile, the PDA-Ce6 nanosphere could be also used as a photoabsorbing agent for PTT, because of the excellent photothermal conversion ability of PDA nanoparticle under laser irradiation at 808 nm. Moreover, our prepared nanosphere had extremely low dark toxicity, while excellent phototoxicity under the combination laser irradiation of 670 and 808 nm, both in vitro and in vivo, compared to any single laser irradiation alone. Therefore, our prepared PDA-Ce6 nanosphere could be applied as a very promising dual-modal phototherapeutic agent for enhanced cancer therapy in future clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.