Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance.
Third-order optical nonlinearities of graphene from monolayer to multilayers were investigated in the femtosecond regime, and the contribution of interlayer coupling to the nonlinearities was studied. The nonlinear refractive index γ of the order of 10−9 cm2/W and the nonlinear absorption coefficient β of 10−6 cm/W were obtained. By systematically investigating the nonlinear optical properties with the number of layers and comparing the coupling graphene with the decoupling superimposed graphene, we found that the coupling of interlayers has large effect upon the nonlinear refraction. These results provide an effective approach for developing graphene-based nonlinear photonic devices
Increasingly intricate in their composition and structural organization, hierarchical multicomponent metamaterials with nonlinear spatially reconfigurable functionalities challenge the intrinsic constraints of natural materials, revealing tremendous potential for the advancement of biochemistry, nanophotonics, and medicine. Recent breakthroughs in high-resolution nanofabrication utilizing ultranarrow, precisely controlled ion or laser beams have enabled assembly of architectures of unprecedented structural and functional complexity, yet costly, time- and energy-consuming high-resolution sequential techniques do not operate effectively at industry-required scale. Inspired by the fictional Baron Munchausen's fruitless attempt to pull himself up, it is demonstrated that metamaterials can undergo intrinsically driven self-assembly, metaphorically pulling themselves up into existence. These internal drivers hold a key to unlocking the potential of metamaterials and mapping a new direction for the large-area, cost-efficient self-organized fabrication of practical devices. A systematic exploration of these efforts is presently missing, and the driving forces governing the intrinsically driven self-assembly are yet to be fully understood. Here, recent progress in the self-organized formation and self-propelled growth of complex hierarchical multicomponent metamaterials is reviewed, with emphasis on key principles, salient features, and potential limitations of this family of approaches. Special stress is placed on self-assembly driven by plasma, current in liquid, ultrasonic, and similar highly energetic effects, which enable self-directed formation of metamaterials with unique properties and structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.