Perovskite light‐emitting diodes (PeLEDs) are emerging candidates for the applications of solution‐processed full‐color displays. However, the device performance of deep‐blue PeLED still lags far behind that of their red and green counterparts, which is largely limited by low external quantum efficiency (EQE) and poor operational stability. Here, a facile and reliable crystallization strategy for perovskite grains is proposed, with improved deep‐blue emission through rational interfacial engineering. By modifying the substrate with potassium cation (K+) as the supplier of heterogeneous nucleation seeds, the interfacial K+‐guided grain growth is realized for well‐packed perovskite assemblies with high surface coverage and the controlled crystal orientation, leading to the enhanced radiative recombination and hole‐transport capabilities. Synergistical boost in device performance is achieved for deep‐blue PeLEDs emitting at 469 nm with a peak EQE of 4.14%, a maximum luminance of 451 cd m–2, and spectrally stable color coordinates of (0.125, 0.076) that matches well with the National Television System Committee (NTSC) standard blue.
Recent studies have demonstrated that formaldehyde (FA)—induced neurotoxicity is important in the pathogenesis of Alzheimer's disease (AD). Elevated levels of FA have been associated with memory impairments and the main hallmarks of AD pathology, including β-amyloid plaques, tau protein hyperphosphorylation, and neuronal loss. Resveratrol (Res), as a polyphenol anti-oxidant, has been considered to have therapeutic potential for the treatment of AD. However, it has not been elucidated whether Res can exert its neuroprotective effects against FA-induced neuronal damages related to AD pathology. To answer this question, the effects of Res were investigated on Neuro-2a (N2a) cells prior to and after FA exposure. The experiments found that pre-treatment with Res significantly decreased FA-induced cytotoxicity, reduced cell apoptosis rates, and inhibited the hyperphosphorylation of tau protein at Thr181 in a dose-dependent manner. Further tests revealed that this effect was associated with the suppression of glycogen synthase kinase (GSK-3β) and calmodulin-dependent protein kinase II (CaMKII) activities, both of which are important kinases for tau protein hyperphosphorylation. In addition, Res was found to increase the activity of phosphoseryl/phosphothreonyl protein phosphatase-2A (PP2A). In summary, these findings provide evidence that Res protects N2a cells from FA-induced damages and suggests that inhibition of GSK-3β and CaMKII and the activation of PP2A by Res protect against the hyperphosphorylation and/or mediates the dephosphorylation of tau protein, respectively. These possible mechanisms underlying the neuroprotective effects of Res against FA-induced damages provide another perspective on AD treatment via inhibition of tau protein hyperhosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.