Polymyxins are the last line of defense against lethal infections caused by multidrug resistant Gram-negative pathogens. Very recently, the use of polymyxins has been greatly challenged by the emergence of the plasmid-borne mobile colistin resistance gene (mcr-1). However, the mechanistic aspects of the MCR-1 colistin resistance are still poorly understood. Here we report the comparative genomics of two new mcr-1-harbouring plasmids isolated from the human gut microbiota, highlighting the diversity in plasmid transfer of the mcr-1 gene. Further genetic dissection delineated that both the trans-membrane region and a substrate-binding motif are required for the MCR-1-mediated colistin resistance. The soluble form of the membrane protein MCR-1 was successfully prepared and verified. Phylogenetic analyses revealed that MCR-1 is highly homologous to its counterpart PEA lipid A transferase in Paenibacili, a known producer of polymyxins. The fact that the plasmid-borne MCR-1 is placed in a subclade neighboring the chromosome-encoded colistin-resistant Neisseria LptA (EptA) potentially implies parallel evolutionary paths for the two genes. In conclusion, our finding provids a first glimpse of mechanism for the MCR-1-mediated colistin resistance.
With the aim of gathering temporal trends on bacterial epidemiology and resistance from multiple laboratories in China, the CHINET surveillance system was organized in 2005. Antimicrobial susceptibility testing was carried out according to a unified protocol using the Kirby-Bauer method or automated systems. Results were analyzed according to Clinical and Laboratory Standards Institute (CLSI) 2014 definitions. Between 2005 and 2014, the number of bacterial isolates ranged between 22,774 and 84,572 annually. Rates of extended-spectrum β-lactamase production among Escherichia coli isolates were stable, between 51.7 and 55.8%. Resistance of E. coli and Klebsiella pneumoniae to amikacin, ciprofloxacin, piperacillin/tazobactam and cefoperazone/sulbactam decreased with time. Carbapenem resistance among K. pneumoniae isolates increased from 2.4 to 13.4%. Resistance of Pseudomonas aeruginosa strains against all of antimicrobial agents tested including imipenem and meropenem decreased with time. On the contrary, resistance of Acinetobacter baumannii strains to carbapenems increased from 31 to 66.7%. A marked decrease of methicillin resistance from 69% in 2005 to 44.6% in 2014 was observed for Staphylococcus aureus. Carbapenem resistance rates in K. pneumoniae and A. baumannii in China are high. Our results indicate the importance of bacterial surveillance studies.
Polymyxins, a family of cationic antimicrobial cyclic peptides, act as a last line of defense against severe infections by Gram-negative pathogens with carbapenem resistance. In addition to the intrinsic resistance to polymyxin E (colistin) conferred by Neisseria eptA, the plasmid-borne mobilized colistin resistance gene mcr-1 has been disseminated globally since the first discovery in Southern China, in late 2015. However, the molecular mechanisms for both intrinsic and transferable resistance to colistin remain largely unknown. Here, we aim to address this gap in the knowledge of these proteins. Structural and functional analyses of EptA and MCR-1 and -2 have defined a conserved 12-residue cavity that is required for the entry of the lipid substrate, phosphatidylethanolamine (PE). The in vitro and in vivo data together have allowed us to visualize the similarities in catalytic activity shared by EptA and MCR-1 and -2. The expression of either EptA or MCR-1 or -2 is shown to remodel the surface of enteric bacteria (e.g., Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, etc.), rendering them resistant to colistin. The parallels in the PE substrate-binding cavities among EptA, MCR-1, and MCR-2 provide a comprehensive understanding of both intrinsic and transferable colistin resistance. Domain swapping between EptA and MCR-1 and -2 reveals that the two domains (transmembrane [TM] region and phosphoethanolamine [PEA] transferase) are not functionally exchangeable. Taken together, the results represent a common mechanism for intrinsic and transferable PEA resistance to polymyxin, a last-resort antibiotic against multidrug-resistant pathogens.
Antibiotic resistance is a prevalent problem in public health worldwide. In general, the carbapenem β-lactam antibiotics are considered a final resort against lethal infections by multidrug-resistant bacteria. Colistin is a cationic polypeptide antibiotic and acts as the last line of defense for treatment of carbapenem-resistant bacteria. Very recently, a new plasmid-borne colistin resistance gene, mcr-2, was revealed soon after the discovery of the paradigm gene mcr-1, which has disseminated globally. However, the molecular mechanisms for MCR-2 colistin resistance are poorly understood. Here we show a unique transposon unit that facilitates the acquisition and transfer of mcr-2. Evolutionary analyses suggested that both MCR-2 and MCR-1 might be traced to their cousin phosphoethanolamine (PEA) lipid A transferase from a known polymyxin producer, Paenibacillus. Transcriptional analyses showed that the level of mcr-2 transcripts is relatively higher than that of mcr-1. Genetic deletions revealed that the transmembrane regions (TM1 and TM2) of both MCR-1 and MCR-2 are critical for their location and function in bacterial periplasm, and domain swapping indicated that the TM2 is more efficient than TM1. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) confirmed that all four MCR proteins (MCR-1, MCR-2, and two chimeric versions [TM1-MCR-2 and TM2-MCR-1]) can catalyze chemical modification of lipid A moiety anchored on lipopolysaccharide (LPS) with the addition of phosphoethanolamine to the phosphate group at the 4′ position of the sugar. Structure-guided site-directed mutagenesis defined an essential 6-residue-requiring zinc-binding/catalytic motif for MCR-2 colistin resistance. The results further our mechanistic understanding of transferable colistin resistance, providing clues to improve clinical therapeutics targeting severe infections by MCR-2-containing pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.