Disruption of the endothelial barrier in response to Gram positive (G+) bacterial toxins is a major complication of acute lung injury (ALI) and can be further aggravated by antibiotics which stimulate toxin release. The integrity of the pulmonary endothelial barrier is mediated by the balance of disruptive forces such as the small GTPase RhoA, and protective forces including endothelium-derived nitric oxide (NO). How NO protects against the barrier dysfunction is incompletely understood and our goal was to determine whether NO and S-nitrosylation can modulate RhoA activity and whether this mechanism is important for G+ toxin-induced microvascular permeability. We found that the G+ toxin listeriolysin-O (LLO) increased RhoA activity and that NO and S-NO donors inhibit RhoA activity. RhoA was robustly S-nitrosylated as determined by biotin-switch and mercury column analysis. MS revealed that three primary cysteine residues are S-nitrosylated including cys16, cys20 and cys159. Mutation of these residues to serine diminished S-nitrosylation to endogenous NO and mutant RhoA was less sensitive to inhibition by S-NO. G+-toxins stimulated the denitrosylation of RhoA which was not mediated by S-nitrosoglutathione reductase (GSNOR), thioredoxin (TRX) or thiol-dependent enzyme activity but was instead stimulated directly by elevated calcium levels. Calcium-promoted the direct denitrosylation of WT but not mutant RhoA and mutant RhoA adenovirus was more effective than WT in disrupting the barrier integrity of human lung microvascular endothelial cells. In conclusion, we reveal a novel mechanism by which NO and S-nitrosylation reduces RhoA activity which may be of significance in the management of pulmonary endothelial permeability induced by G+-toxins.
Thallium (Tl) is a highly toxic trace metal widely distributed in water environments, which may threaten the water quality and aquatic organisms at excessive levels due to increased anthropogenic activities. This study investigated the changes in microbial communities of intestines and organs of zebrafish. The toxic response assessments include intestinal microbiota composition and the histopathology of zebrafish’s gill and liver tissues under exposure of Tl at environmental-relevant levels. The results support that the intestinal microbial community of zebrafish greatly changed under a relatively high Tl concentration (1000 ng/L). A significant increase of pathogenic intestinal bacteria such as Mycobaterium in the intestine of zebrafish exposed at Tl levels over 500 ng/L was found. Additionally, the gill and liver tissues displayed different degrees of damage under Tl exposure, which possibly leads to mating behavior changes and death of zebrafish. The results indicate that low doses of Tl in the aquatic environment induce high toxicity on zebrafish and may pose pathological threats to the gill and liver of zebrafish. In addition, Tl exposure gives rise to increasing abundance of pathogenic intestinal bacteria and changes the community structure of intestinal microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.