Pro-apoptotic Bax induces mitochondrial outer membrane permeabilization (MOMP) by forming oligomers through a largely undefined process. Using site-specific disulfide crosslinking, compartment-specific chemical labeling, and mutational analysis, we found that activated integral membrane Bax proteins form a BH3-in-groove dimer interface on the MOM surface similar to that observed in crystals. However, after the a5 helix was released into the MOM, the remaining interface with a2, a3, and a4 helices was rearranged. Another dimer interface was formed inside the MOM by two intersected or parallel a9 helices. Combinations of these interfaces generated oligomers in the MOM. Oligomerization was initiated by BH3-in-groove dimerization, without which neither the other dimerizations nor MOMP occurred. In contrast, a9 dimerization occurred downstream and was required for release of large but not small proteins from mitochondria. Moreover, the release of large proteins was facilitated by a9 insertion into the MOM and localization to the pore rim. Therefore, the BH3-in-groove dimerization on the MOM nucleates the assembly of an oligomeric Bax pore that is enlarged by a9 dimerization at the rim.
Plant height and tiller number are two important characters related to yield in rice (Oriza sativa L.). Zhenshan97×Minghui63 recombinant inbred lines were employed to dissect the genetic basis of development of plant height and tiller number using conditional and unconditional composite interval mapping approaches. The traits were normally distributed with transgressive segregation in both directions. Increasingly negative correlations were observed between tiller number and plant height at five consecutive growth stages. A total of 23 and 24 QTL were identified for tiller number and plant height, respectively. More QTL were detected by conditional mapping than by conventional mapping. Different QTL/genes apparently controlled the traits at different developmental stages. Three genomic regions were identified as putative co‐located QTL, which showed opposite additive effects on tiller number and plant height. Furthermore, in the period reaching maximum tiller number, the expression of QTL for tiller number was active, whereas that of QTL for plant height was inactive. These facts provided a possible genetic explanation for the negative correlations between the traits. The research demonstrates conditional mapping to be superior to conventional mapping for this type of research. Implications of the results for hybrid rice improvement are discussed.
Interactions of Bcl-2 family proteins regulate permeability of the mitochondrial outer membrane and apoptosis. In particular, Bax forms an oligomer that permeabilizes the membrane. To map the interface of the Bax oligomer we used Triton X-100 as a membrane surrogate and performed site-specific photocross-linking. Bax-specific adducts were formed through photo-reactive probes at multiple sites that can be grouped into two surfaces. The first surface overlaps with the BH1-3 groove formed by Bcl-2 Homology motif 1, 2, and 3; the second surface is a rear pocket located on the opposite side of the protein from the BH1-3 groove. Further cross-linking experiments using Bax BH3 peptides and mutants demonstrated that the two surfaces interact with their counterparts in neighboring proteins to form two separated interfaces and that interaction at the BH1-3 groove primes the rear pocket for further interaction. Therefore, Bax oligomerization proceeds through a series of interactions that occur at separate, yet allosterically, coupled interfaces.
Ypt1 directly recruits the kinase Hrr25 to COPII vesicles to activate it in two different pathways: ER to Golgi and the catabolic macroautophagy pathway induced in response to cell stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.