There is an increasing risk of mental disorders, such as acute stress disorder (ASD), post-traumatic stress disorder (PTSD) and depression among survivors who were trapped in rubble during earthquake. Such long-term impaction of a single acute restraint stress has not been extensively explored. In this study, we subjected mice to 24-hour-restraint to simulate the trapping episode, and investigated the acute (2 days after the restraint) and long-term (35 days after the restraint) impacts. Surprisingly, we found that the mice displayed depression-like behaviors, decreased glucose uptake in brain and reduced adult hippocampal neurogenesis 35 days after the restraint. Differential expression profiling based on microarrays suggested that genes and pathways related to depression and other mental disorders were differentially expressed in both PFC and hippocampus. Furthermore, the depression-like phenotypes induced by 24-hour-restraint could be reversed by fluoxetine, a type of antidepressant drug. These findings demonstrated that a single severe stressful event could produce long-term depressive-like phenotypes. Moreover, the 24-hour-restraint stress mice could also be used for further studies on mood disorders.
PLNP-Mal-EGFR showed significantly enhanced cellular cytotoxicity against HCC cells overexpressing EGFR compared with nontargeted nanoparticles (polymer-lipid hybrid nanoparticles [containing DSPE-PEG-Mal] and polymer-lipid hybrid nanoparticles [containing DSPE-mPEG] combined with anti-EGFR Fab´). PLNP-Mal-EGFR and nontargeted nanoparticles could significantly reduce the proportion of side-population cells in HCC cells. The in vivo accumulation of PLNP-Mal-EGFR was obviously higher than that of nontargeted nanoparticles in SMMC-7721 HCC cells overexpressing EGFR. Notably, PLNP-Mal-EGFR showed significantly enhanced anti-tumor activity against HCC in vivo compared with nontargeted nanoparticles and free adriamycin. Therefore, PLNP-Mal-EGFR may serve as an effective therapeutic approach for HCC chemotherapy.
The anti-ErbB2 antibody trastuzumab has shown significant clinical benefits in metastatic breast cancer. However, resistance to trastuzumab is common. Heterodimerization between ErbB2 and other ErbBs may redundantly trigger cell proliferation signals and confer trastuzumab resistance. Here, we developed a bispecific anti-ErbB2 antibody using trastuzumab and pertuzumab, another ErbB2-specific humanized antibody that binds to a distinct epitope from trastuzumab. This bispecific antibody, denoted as TP L , retained the full binding activities of both parental antibodies and exhibited pharmacokinetic properties similar to those of a conventional immunoglobulin G molecule. Unexpectedly, TP L showed superior ErbB2 heterodimerization-blocking activity over the combination of both parental monoclonal antibodies, possibly through steric hindrance and/or inducing ErbB2 conformational change. Further data indicated that TP L potently abrogated ErbB2 signaling in trastuzumab-resistant breast cancer cell lines. In addition, we showed that TP L was far more effective than trastuzumab plus pertuzumab in inhibiting the growth of trastuzumab-resistant breast cancer cell lines, both in vitro and in vivo. Importantly, TP L treatment eradicated established trastuzumab-resistant tumors in tumor-bearing nude mice. Our results suggest that trastuzumab-resistant breast tumors remain dependent on ErbB2 signaling and that comprehensive blockade of ErbB2 heterodimerization may be an effective therapeutic avenue. The unique potential of TP L to overcome trastuzumab resistance warrants its consideration as a promising treatment in the clinic. Cancer Res; 73(21);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.