Background Public health is a priority for the Chinese Government. Evidence-based decision making for health at the province level in China, which is home to a fifth of the global population, is of paramount importance. This analysis uses data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to help inform decision making and monitor progress on health at the province level. Methods We used the methods in GBD 2017 to analyse health patterns in the 34 province-level administrative units in China from 1990 to 2017. We estimated all-cause and cause-specific mortality, years of life lost (YLLs), years lived with disability (YLDs), disability-adjusted life-years (DALYs), summary exposure values (SEVs), and attributable risk. We compared the observed results with expected values estimated based on the Socio-demographic Index (SDI). Findings Stroke and ischaemic heart disease were the leading causes of death and DALYs at the national level in China in 2017. Age-standardised DALYs per 100 000 population decreased by 33•1% (95% uncertainty interval [UI] 29•8 to 37•4) for stroke and increased by 4•6% (-3•3 to 10•7) for ischaemic heart disease from 1990 to 2017. Agestandardised stroke, ischaemic heart disease, lung cancer, chronic obstructive pulmonary disease, and liver cancer were the five leading causes of YLLs in 2017. Musculoskeletal disorders, mental health disorders, and sense organ diseases were the three leading causes of YLDs in 2017, and high systolic blood pressure, smoking, high-sodium diet, and ambient particulate matter pollution were among the leading four risk factors contributing to deaths and DALYs. All provinces had higher than expected DALYs per 100 000 population for liver cancer, with the observed to expected ratio ranging from 2•04 to 6•88. The all-cause age-standardised DALYs per 100 000 population were lower than expected in all provinces in 2017, and among the top 20 level 3 causes were lower than expected for ischaemic heart disease, Alzheimer's disease, headache disorder, and low back pain. The largest percentage change at the national level in age-standardised SEVs among the top ten leading risk factors was in high body-mass index (185%, 95% UI 113•1 to 247•7]), followed by ambient particulate matter pollution (88•5%, 66•4 to 116•4). Interpretation China has made substantial progress in reducing the burden of many diseases and disabilities. Strategies targeting chronic diseases, particularly in the elderly, should be prioritised in the expanding Chinese health-care system.
ObjectivesTo examine the association between temperature and cause specific mortality, and to quantify the corresponding disease burden attributable to non-optimum ambient temperatures.DesignTime series analysis.Setting272 main cities in China.PopulationNon-accidental deaths in 272 cities covered by the Disease Surveillance Point System of China, from January 2013 to December 2015.Main outcomes and measuresDaily numbers of deaths from all non-accidental causes and main cardiorespiratory diseases. Potential effect modifiers included demographic, climatic, geographical, and socioeconomic characteristics. The analysis used distributed lag non-linear models to estimate city specific associations, and multivariate meta-regression analysis to obtain the effect estimates at national and regional levels.Results1 826 186 non-accidental deaths from total causes were recorded in the study period. Temperature and mortality consistently showed inversely J shaped associations. At the national average level, relative to the minimum mortality temperature (22.8°C, 79.1st centile), the mortality risk of extreme cold temperature (at −1.4°C, the 2.5th centile) lasted for more than 14 days, whereas the risk of extreme hot temperature (at 29.0°C, the 97.5th centile) appeared immediately and lasted for two to three days. 14.33% of non-accidental total mortality was attributable to non-optimum temperatures, of which moderate cold (ranging from −1.4 to 22.8°C), moderate heat (22.8 to 29.0°C), extreme cold (−6.4 to −1.4°C), and extreme heat (29.0 to 31.6°C) temperatures corresponded to attributable fractions of 10.49%, 2.08%, 1.14%, and 0.63%, respectively. The attributable fractions were 17.48% for overall cardiovascular disease, 18.76% for coronary heart disease, 16.11% for overall stroke, 14.09% for ischaemic stroke, 18.10% for haemorrhagic stroke, 10.57% for overall respiratory disease, and 12.57% for chronic obstructive pulmonary diseases. The mortality risk and burden were more prominent in the temperate monsoon and subtropical monsoon climatic zones, in specific subgroups (female sex, age ≥75 years, and ≤9 years spent in education), and in cities characterised by higher urbanisations rates and shorter durations of central heating.ConclusionsThis nationwide study provides a comprehensive picture of the non-linear associations between ambient temperature and mortality from all natural causes and main cardiorespiratory diseases, as well as the corresponding disease burden that is mainly attributable to moderate cold temperatures in China. The findings on vulnerability characteristics can help improve clinical and public health practices to reduce disease burden associated with current and future abnormal weather.
Background:Cohort studies in North America and western Europe have reported increased risk of mortality associated with long-term exposure to fine particles (PM2.5), but to date, no such studies have been reported in China, where higher levels of exposure are experienced.Objectives:We estimated the association between long-term exposure to PM2.5 with nonaccidental and cause-specific mortality in a cohort of Chinese men.Methods:We conducted a prospective cohort study of 189,793 men 40 y old or older during 1990–91 from 45 areas in China. Annual average PM2.5 levels for the years 1990, 1995, 2000, and 2005 were estimated for each cohort location using a combination of satellite-based estimates, chemical transport model simulations, and ground-level measurements developed for the Global Burden of Disease (GBD) 2013 study. A Cox proportional hazards regression model was used to estimate hazard ratios (HR) for nonaccidental cardiovascular disease (CVD), chronic obstructive pulmonary disease (COPD), and lung-cancer mortality. We also assessed the shape of the concentration–response relationship and compared the risk estimates with those predicted by Integrated Exposure-Response (IER) function, which incorporated estimates of mortality risk from previous cohort studies in western Europe and North America.Results:The mean level of PM2.5 exposure during 2000–2005 was 43.7 μg/m3 (ranging from 4.2 to 83.8 μg/m3). Mortality HRs (95% CI) per 10-μg/m3 increase in PM2.5 were 1.09 (1.08, 1.09) for nonaccidental causes; 1.09 (1.08, 1.10) for CVD, 1.12 (1.10, 1.13) for COPD; and 1.12 (1.07, 1.14) for lung cancer. The HR estimate from our cohort was consistently higher than IER predictions.Conclusions:Long-term exposure to PM2.5 was associated with nonaccidental, CVD, lung cancer, and COPD mortality in China. The IER estimator may underestimate the excess relative risk of cause-specific mortality due to long-term exposure to PM2.5 over the exposure range experienced in China and other low- and middle-income countries. https://doi.org/10.1289/EHP1673
IMPORTANCE Cardiovascular disease (CVD) remains the top cause of death in China. To our knowledge, no consistent and comparable assessments of CVD burden have been produced at subnational levels, and little is understood about the spatial patterns and temporal trends of CVD in China. OBJECTIVE To determine the national and province-level burden of CVD from 1990 to 2016 in China. DESIGN, SETTING, AND PARTICIPANTS Following the methodology framework and analytical strategies used in the 2016 Global Burden of Disease study, the mortality, prevalence, and disability-adjusted life-years (DALYs) of CVD in the Chinese population were examined by age, sex, and year and according to 10 subcategories. Estimates were produced for all province-level administrative units of mainland China, Hong Kong, and Macao. EXPOSURES Residence in China. MAIN OUTCOMES AND MEASURES Mortality, prevalence, and DALYs of CVD. RESULTS The annual number of deaths owing to CVD increased from 2.51 million to 3.97 million between 1990 and 2016; the age-standardized mortality rate fell by 28.7%, from 431.6 per 100 000 persons in 1990 to 307.9 per 100 000 in 2016. Prevalent cases of CVD doubled since 1990, reaching nearly 94 million in 2016. The age-standardized prevalence rate of CVD overall increased significantly from 1990 to 2016 by 14.7%, as did rates for ischemic heart disease (19.1%), ischemic stroke (36.6%), cardiomyopathy and myocarditis (23.1%), and endocarditis (26.7%). Substantial reduction in the CVD burden, as measured by age-standardized DALY rate, was observed from 1990 to 2016 nationally, with a greater reduction in women (43.7%) than men (24.7%). There were marked differences in the spatial patterns of mortality, prevalence, and DALYs of CVD overall as well as its main subcategories, including ischemic heart disease, hemorrhagic stroke, and ischemic stroke. The CVD burden appeared to be lower in coastal provinces with higher economic development. The between-province gap in relative burden of CVD increased from 1990 to 2016, with faster decline in economically developed provinces. CONCLUSIONS AND RELEVANCE Substantial discrepancies in the total CVD burden and burdens of CVD subcategories have persisted between provinces in China despite a relative decrease in the CVD burden. Geographically targeted considerations are needed to tailor future strategies to enhance CVD health throughout China and in specific provinces.
Background The estimation of influenza-associated excess mortality in countries can help to improve estimates of the global mortality burden attributable to influenza virus infections. We did a study to estimate the influenza-associated excess respiratory mortality in mainland China for the 2010-11 through 2014-15 seasons. MethodsWe obtained provincial weekly influenza surveillance data and population mortality data for 161 disease surveillance points in 31 provinces in mainland China from the Chinese Center for Disease Control and Prevention for the years 2005-15. Disease surveillance points with an annual average mortality rate of less than 0•4% between 2005 and 2015 or an annual mortality rate of less than 0•3% in any given years were excluded. We extracted data for respiratory deaths based on codes J00-J99 under the tenth edition of the International Classification of Diseases. Data on respiratory mortality and population were stratified by age group (age <60 years and ≥60 years) and aggregated by province. The overall annual population data of each province and national annual respiratory mortality data were compiled from the China Statistical Yearbook. Influenza surveillance data on weekly proportion of samples testing positive for influenza virus by type or subtype for 31 provinces were extracted from the National Sentinel Hospitalbased Influenza Surveillance Network. We estimated influenza-associated excess respiratory mortality rates between the 2010-11 and 2014-15 seasons for 22 provinces with valid data in the country using linear regression models. Extrapolation of excess respiratory mortality rates was done using random-effect meta-regression models for nine provinces without valid data for a direct estimation of the rates. Findings We fitted the linear regression model with the data from 22 of 31 provinces in mainland China, representing 83•0% of the total population. We estimated that an annual mean of 88 100 (95% CI 84 200-92 000) influenza-associated excess respiratory deaths occurred in China in the 5 years studied, corresponding to 8•2% (95% CI 7•9-8•6) of respiratory deaths. The mean excess respiratory mortality rates per 100 000 person-seasons for influenza A(H1N1)pdm09, A(H3N2), and B viruses were 1•6 (95% CI 1•5-1•7), 2•6 (2•4-2•8), and 2•3 (2•1-2•5), respectively. Estimated excess respiratory mortality rates per 100 000 person-seasons were 1•5 (95% CI 1•1-1•9) for individuals younger than 60 years and 38•5 (36•8-40•2) for individuals aged 60 years or older. Approximately 71 000 (95% CI 67 800-74 100) influenzaassociated excess respiratory deaths occurred in individuals aged 60 years or older, corresponding to 80% of such deaths. Interpretation Influenza was associated with substantial excess respiratory mortality in China between 2010-11 and 2014-15 seasons, especially in older adults aged at least 60 years. Continuous and high-quality surveillance data across China are needed to improve the estimation of the disease burden attributable to influenza and the best public health interventions...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.