Polymeric nanomaterials emerge as key building blocks for engineering materials in a variety of applications. In particular, the high modulus polymeric nanofibers are suitable to prepare flexible yet strong membrane separators to prevent the growth and penetration of lithium dendrites for safe and reliable high energy lithium metal-based batteries. High ionic conductance, scalability, and low cost are other required attributes of the separator important for practical implementations. Available materials so far are difficult to comply with such stringent criteria. Here, we demonstrate a high-yield exfoliation of ultrastrong poly(p-phenylene benzobisoxazole) nanofibers from the Zylon microfibers. A highly scalable blade casting process is used to assemble these nanofibers into nanoporous membranes. These membranes possess ultimate strengths of 525 MPa, Young's moduli of 20 GPa, thermal stability up to 600 °C, and impressively low ionic resistance, enabling their use as dendrite-suppressing membrane separators in electrochemical cells. With such high-performance separators, reliable lithium-metal based batteries operated at 150 °C are also demonstrated. Those polyoxyzole nanofibers would enrich the existing library of strong nanomaterials and serve as a promising material for large-scale and cost-effective safe energy storage.
Ba deficiency is used to tune the electronic, oxygen-ion and proton conduction in BaCo0.4Fe0.4Zr0.1Y0.1O3−δ perovskite for a high-activity cathode of PCFCs.
Mixed
oxygen ionic and electronic conduction is a vital function for cathode
materials of solid oxide fuel cells (SOFCs), ensuring high efficiency
and low-temperature operation. However, Fe-based layered double perovskites,
as a classical family of mixed oxygen ionic and electronic conducting
(MIEC) oxides, are generally inactive toward the oxygen reduction
reaction due to their intrinsic low electronic and oxygen-ion conductivity.
Herein, Zn doping is presented as a novel pathway to improve the electrochemical
performance of Fe-based layered double perovskite oxides in SOFC applications.
The results demonstrate that the incorporation of Zn ions at Fe sites
of the PrBaFe2O5+δ (PBF) lattice simultaneously
regulates the concentration of holes and oxygen vacancies. Consequently,
the oxygen surface exchange coefficient and oxygen-ion bulk diffusion
coefficient of Zn-doped PBF are significantly tuned. The enhanced
mixed oxygen ionic and electronic conduction is further confirmed
by a lower polarization resistance of 0.0615 and 0.231 Ω·cm2 for PrBaFe1.9Zn0.1O5+δ (PBFZ0.1) and PBF, respectively, which is measured using symmetric
cells at 750 °C. Moreover, the PBFZ0.1-based single cell demonstrates
the highest output performance among the reported Fe-based layered
double perovskite cathodes, rendering a peak power density of 1.06
W·cm–2 at 750 °C and outstanding stability
over 240 h at 700 °C. The current work provides a highly effective
strategy for designing cathode materials for next-generation SOFCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.