All-dielectric metamaterials offer great flexibility for controlling light-matter interaction, owing to their strong electric and magnetic resonances with negligible loss at wavelengths above the material bandgap. Here, we propose an all-dielectric asymmetric metasurface structure exhibiting high quality factor and prominent Fano line shape. Over three-orders photoluminescence enhancement is demonstrated in the fabricated all-dielectric metasurface with record-high quality factor of 1011. We find this strong emission enhancement is attributed to the coherent Fano resonances, which originate from the destructive interferences of antisymmetric displacement currents in the asymmetric all-dielectric metasurface. Our observations show a promising approach to realize light emitters based on all-dielectric metasurfaces.
To define and characterize optical systems, obtaining the amplitude, phase, and polarization profile of optical beams is of utmost importance. Traditional polarimetry is well established to characterize the polarization state. Recently, metasurfaces have successfully been introduced as compact optical components. Here, we take the metasurface concept to the system level by realizing arrays of metalenses, allowing the determination of the polarization profile of an optical beam. We use silicon-based metalenses with a numerical aperture of 0.32 and a mean measured focusing efficiency in transmission mode of 28% at a wavelength of 1550 nm. Our system is extremely compact and allows for real-time beam diagnostics by inspecting the foci amplitudes. By further analyzing the foci displacements in the spirit of a Hartmann-Shack wavefront sensor, we can simultaneously detect phase-gradient profiles. As application examples, we diagnose the profiles of a radially polarized beam, an azimuthally polarized beam, and of a vortex beam.
We demonstrate four-wave mixing (FWM) in a 10-μm-radius silicon microring resonator with the assistance of giant nonlinearity of the monolayer graphene. A maximum enhancement of 6.8 dB of conversion efficiency in the silicon-graphene microring (SGM) resonator is observed. A nonlinear propagation model is established and the optical Kerr coefficient of the silicon-graphene hybrid waveguide is three times larger than that of the silicon waveguide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.