Mn 4 þ -activated fluoride compounds, as an alternative to commercial (oxy)nitride phosphors, are emerging as a new class of non-rare-earth red phosphors for high-efficacy warm white LEDs. Currently, it remains a challenge to synthesize these phosphors with high photoluminescence quantum yields through a convenient chemical route. Herein we propose a general but convenient strategy based on efficient cation exchange reaction, which had been originally regarded only effective in synthesizing nano-sized materials before, for the synthesis of Mn 4 þ -activated fluoride microcrystals such as K 2 TiF 6 , K 2 SiF 6 , NaGdF 4 and NaYF 4 . Particularly we achieve a photoluminescence quantum yield as high as 98% for K 2 TiF 6 :Mn 4 þ . By employing it as red phosphor, we fabricate a high-performance white LED with low correlated colour temperature (3,556 K), high-colour-rendering index (R a ¼ 81) and luminous efficacy of 116 lm W À 1 . These findings show great promise of K 2 TiF 6 :Mn 4 þ as a commercial red phosphor in warm white LEDs, and open up new avenues for the exploration of novel non-rare-earth red emitting phosphors.
Modular optimization of metal-organic frameworks (MOFs) was realized by incorporation of coordinatively unsaturated single atoms in a MOF matrix. The newly developed MOF can selectively capture and photoreduce CO with high efficiency under visible-light irradiation. Mechanistic investigation reveals that the presence of single Co atoms in the MOF can greatly boost the electron-hole separation efficiency in porphyrin units. Directional migration of photogenerated excitons from porphyrin to catalytic Co centers was witnessed, thereby achieving supply of long-lived electrons for the reduction of CO molecules adsorbed on Co centers. As a direct result, porphyrin MOF comprising atomically dispersed catalytic centers exhibits significantly enhanced photocatalytic conversion of CO , which is equivalent to a 3.13-fold improvement in CO evolution rate (200.6 μmol g h ) and a 5.93-fold enhancement in CH generation rate (36.67 μmol g h ) compared to the parent MOF.
Water splitting represents a promising technology for renewable energy conversion and storage, but it is greatly hindered by the kinetically sluggish oxygen evolution reaction (OER). Here, using Au-nanoparticle-decorated Ni(OH)2 nanosheets [Ni(OH)2-Au] as catalysts, we demonstrate that the photon-induced surface plasmon resonance (SPR) excitation on Au nanoparticles could significantly activate the OER catalysis, specifically achieving a more than 4-fold enhanced activity and meanwhile affording a markedly decreased overpotential of 270 mV at the current density of 10 mA cm(-2) and a small Tafel slope of 35 mV dec(-1) (no iR-correction), which is much better than those of the benchmark IrO2 and RuO2, as well as most Ni-based OER catalysts reported to date. The synergy of the enhanced generation of Ni(III/IV) active species and the improved charge transfer, both induced by hot-electron excitation on Au nanoparticles, is proposed to account for such a markedly increased activity. The SPR-enhanced OER catalysis could also be observed over cobalt oxide (CoO)-Au and iron oxy-hydroxide (FeOOH)-Au catalysts, suggesting the generality of this strategy. These findings highlight the possibility of activating OER catalysis by plasmonic excitation and could open new avenues toward the design of more-energy-efficient catalytic water oxidation systems with the assistance of light energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.