Bacterioplankton from a meso-eutrophic dam reservoir was size fractionated to reduce (<0.8-m treatment) or enhance (<5-m treatment) protistan grazing and then incubated in situ for 96 h in dialysis bags. Time course samples were taken from the bags and the reservoir to estimate bacterial abundance, mean cell volume, production, protistan grazing, viral abundance, and frequency of visibly infected cells. Shifts in bacterial community composition (BCC) were examined by denaturing gradient gel electrophoresis (DGGE), cloning and sequencing of 16S rDNA genes from the different treatments, and fluorescence in situ hybridization (FISH) with previously employed and newly designed oligonucleotide probes. Changes in bacterioplankton characteristics were clearly linked to changes in mortality rates. In the reservoir, where bacterial production about equaled protist grazing and viral mortality, community characteristics were nearly invariant. In the "grazerfree" (0.8-m-filtered) treatment, subject only to a relatively low mortality rate (ϳ17% day ؊1 ) from viral lysis, bacteria increased markedly in concentration. While the mean bacterial cell volume was invariant, DGGE indicated a shift in BCC and FISH revealed an increase in the proportion of one lineage within the beta proteobacteria. In the grazing-enhanced treatment (5-m filtrate), grazing mortality was ϳ200% and viral lysis resulted in mortality of 30% of daily production. Cell concentrations declined, and grazing-resistant flocs and filaments eventually dominated the biomass, together accounting for >80% of the total bacteria by the end of the experiment. Once again, BCC changed strongly and a significant fraction of the large filaments was detected using a FISH probe targeted to members of the Flectobacillus lineage. Shifts of BCC were also reflected in DGGE patterns and in the increases in the relative importance of both beta proteobacteria and members of the Cytophaga-Flavobacterium cluster, which consistently formed different parts of the bacterial flocs. Viral concentrations and frequencies of infected cells were highly significantly correlated with grazing rates, suggesting that protistan grazing may stimulate viral activity.
'In late summer 1993 an intensive study was carried out on protozoan grazing in the epilimnion and metalimnion of the eutrophic Rimov Reservoir in south Bohemia. On average, -70% of bacterial production was consumed by heterotrophic flagellates and -20% by ciliates. Ciliate numbers increased from 5 to 70 cells ml l over the 5-week study period. Ciliates ~30 pm in size were numerically dominant in both layers and included Halteria grandinella and Strobilidium hexakinetum (Oligotrichida), Cyrtolophosis mucicola (Cyrtolophosida), Cinetochilum margaritaceum (Scuticociliatida), Urotricha spp., and Coleps sp. (Prostomatida). Ciliate species-specific grazing rates on bacteria and picocyanobacteria were determined. The highest individual cell grazing rates, 4,200 bacteria and 560 picocyanobacteria cell-' h-l, were observed in Vorticella aquadulcis-complex. Oligotrichs ingested on average 360-2,130 bacteria and 76
We investigated net growth rates of distinct bacterioplankton groups and heterotrophic nanoflagellate (HNF) communities in relation to phosphorus availability by analysing eight in situ manipulation experiments, conducted between 1997 and 2003, in the canyon-shaped Rímov reservoir (Czech Republic). Water samples were size-fractionated and incubated in dialysis bags at the sampling site or transplanted into an area of the reservoir, which differed in phosphorus limitation (range of soluble reactive phosphorus concentrations--SRP, 0.7-96 microg l-1). Using five different rRNA-targeted oligonucleotide probes, net growth rates of the probe-defined bacterial groups and HNF assemblages were estimated and related to SRP using Monod kinetics, yielding growth rate constants specific for each bacterial group. We found highly significant differences among their maximum growth rates while insignificant differences were detected in the saturation constants. However, the latter constants represent only tentative estimates mainly due to insufficient sensitivity of the method used at low in situ SRP concentrations. Interestingly, in these same experiments HNF assemblages grew significantly faster than any bacterial group studied except for a small, but abundant cluster of Betaproteobacteria (targeted by the R-BT065 probe). Potential ecological implications of different growth capabilities for possible life strategies of different bacterial phylogenetic lineages are discussed.
In a mesotrophic reservoir, we examined the effects on the bacterioplankton of distinct consumers of bacteria, viruses and heterotrophic nanoflagellates, both alone and combined in an experiment using natural populations and in situ incubations in dialysis bags. Ribosomal RNA-targeted probes were employed as well as 16S RNA gene based PCR denaturing gradient gel electrophoresis (DGGE) to enumerate bacterial groups and assess bacterial community composition. We employed probes for Actinobacteria (HGC69a probe), Cytophaga-Flavobacterium-Bacteroidetes bacteria (CF319a probe), BET42a probe (Betaproteobacteria) and a subgroup-Betaproteobacteria (R-BT065 probe). We found consumer-specific effects on bacterial activity and diversity (against a background of CF and BET dominating all treatments) suggesting distinct vulnerabilities to the two sources of mortality. For example, growth rate of Actinobacteria was only positive in the presence of flagellates, while towards the end of the experiment (T(72-96 h)) growth rate of R-BT was only positive in the viruses only treatment. More specific data on how viruses and flagellates influenced Flectobacillus are shown in the companion paper. Highest richness (number of DGGE bands) was found in the virus only treatment and lowest when both consumers were present. In addition, we found suggestions of both antagonistic and synergistic interactions between the two sources of bacterial mortality. Notably, bactivory by flagellates was associated with reductions in bacterial diversity and increases in viral production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.